|
import torch
|
|
import os
|
|
import sys
|
|
proj_dir = os.path.dirname(os.path.abspath(__file__))
|
|
sys.path.append(proj_dir)
|
|
from .libs.base_utils import do_resize_content
|
|
from .imagedream.ldm.util import (
|
|
instantiate_from_config,
|
|
get_obj_from_str,
|
|
)
|
|
from omegaconf import OmegaConf
|
|
from PIL import Image
|
|
import PIL
|
|
import rembg
|
|
class TwoStagePipeline(object):
|
|
def __init__(
|
|
self,
|
|
stage1_model_config,
|
|
stage1_sampler_config,
|
|
device="cuda",
|
|
dtype=torch.float16,
|
|
resize_rate=1,
|
|
) -> None:
|
|
"""
|
|
only for two stage generate process.
|
|
- the first stage was condition on single pixel image, gererate multi-view pixel image, based on the v2pp config
|
|
- the second stage was condition on multiview pixel image generated by the first stage, generate the final image, based on the stage2-test config
|
|
"""
|
|
self.resize_rate = resize_rate
|
|
|
|
self.stage1_model = instantiate_from_config(OmegaConf.load(stage1_model_config.config).model)
|
|
self.stage1_model.load_state_dict(torch.load(stage1_model_config.resume, map_location="cpu"), strict=False)
|
|
self.stage1_model = self.stage1_model.to(device).to(dtype)
|
|
|
|
self.stage1_model.device = device
|
|
self.device = device
|
|
self.dtype = dtype
|
|
self.stage1_sampler = get_obj_from_str(stage1_sampler_config.target)(
|
|
self.stage1_model, device=device, dtype=dtype, **stage1_sampler_config.params
|
|
)
|
|
|
|
def stage1_sample(
|
|
self,
|
|
pixel_img,
|
|
prompt="3D assets",
|
|
neg_texts="uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear.",
|
|
step=50,
|
|
scale=5,
|
|
ddim_eta=0.0,
|
|
):
|
|
if type(pixel_img) == str:
|
|
pixel_img = Image.open(pixel_img)
|
|
|
|
if isinstance(pixel_img, Image.Image):
|
|
if pixel_img.mode == "RGBA":
|
|
background = Image.new('RGBA', pixel_img.size, (0, 0, 0, 0))
|
|
pixel_img = Image.alpha_composite(background, pixel_img).convert("RGB")
|
|
else:
|
|
pixel_img = pixel_img.convert("RGB")
|
|
else:
|
|
raise
|
|
uc = self.stage1_sampler.model.get_learned_conditioning([neg_texts]).to(self.device)
|
|
stage1_images = self.stage1_sampler.i2i(
|
|
self.stage1_sampler.model,
|
|
self.stage1_sampler.size,
|
|
prompt,
|
|
uc=uc,
|
|
sampler=self.stage1_sampler.sampler,
|
|
ip=pixel_img,
|
|
step=step,
|
|
scale=scale,
|
|
batch_size=self.stage1_sampler.batch_size,
|
|
ddim_eta=ddim_eta,
|
|
dtype=self.stage1_sampler.dtype,
|
|
device=self.stage1_sampler.device,
|
|
camera=self.stage1_sampler.camera,
|
|
num_frames=self.stage1_sampler.num_frames,
|
|
pixel_control=(self.stage1_sampler.mode == "pixel"),
|
|
transform=self.stage1_sampler.image_transform,
|
|
offset_noise=self.stage1_sampler.offset_noise,
|
|
)
|
|
|
|
stage1_images = [Image.fromarray(img) for img in stage1_images]
|
|
stage1_images.pop(self.stage1_sampler.ref_position)
|
|
return stage1_images
|
|
|
|
def stage2_sample(self, pixel_img, stage1_images, scale=5, step=50):
|
|
if type(pixel_img) == str:
|
|
pixel_img = Image.open(pixel_img)
|
|
|
|
if isinstance(pixel_img, Image.Image):
|
|
if pixel_img.mode == "RGBA":
|
|
background = Image.new('RGBA', pixel_img.size, (0, 0, 0, 0))
|
|
pixel_img = Image.alpha_composite(background, pixel_img).convert("RGB")
|
|
else:
|
|
pixel_img = pixel_img.convert("RGB")
|
|
else:
|
|
raise
|
|
stage2_images = self.stage2_sampler.i2iStage2(
|
|
self.stage2_sampler.model,
|
|
self.stage2_sampler.size,
|
|
"3D assets",
|
|
self.stage2_sampler.uc,
|
|
self.stage2_sampler.sampler,
|
|
pixel_images=stage1_images,
|
|
ip=pixel_img,
|
|
step=step,
|
|
scale=scale,
|
|
batch_size=self.stage2_sampler.batch_size,
|
|
ddim_eta=0.0,
|
|
dtype=self.stage2_sampler.dtype,
|
|
device=self.stage2_sampler.device,
|
|
camera=self.stage2_sampler.camera,
|
|
num_frames=self.stage2_sampler.num_frames,
|
|
pixel_control=(self.stage2_sampler.mode == "pixel"),
|
|
transform=self.stage2_sampler.image_transform,
|
|
offset_noise=self.stage2_sampler.offset_noise,
|
|
)
|
|
stage2_images = [Image.fromarray(img) for img in stage2_images]
|
|
return stage2_images
|
|
|
|
def set_seed(self, seed):
|
|
self.stage1_sampler.seed = seed
|
|
|
|
|
|
def __call__(self, pixel_img, prompt="3D assets", scale=5, step=50):
|
|
pixel_img = do_resize_content(pixel_img, self.resize_rate)
|
|
stage1_images = self.stage1_sample(pixel_img, prompt, scale=scale, step=step)
|
|
|
|
|
|
return {
|
|
"ref_img": pixel_img,
|
|
"stage1_images": stage1_images,
|
|
|
|
}
|
|
|
|
rembg_session = rembg.new_session()
|
|
|
|
def expand_to_square(image, bg_color=(0, 0, 0, 0)):
|
|
|
|
width, height = image.size
|
|
if width == height:
|
|
return image
|
|
new_size = (max(width, height), max(width, height))
|
|
new_image = Image.new("RGBA", new_size, bg_color)
|
|
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
|
|
new_image.paste(image, paste_position)
|
|
return new_image
|
|
|
|
def remove_background(
|
|
image: PIL.Image.Image,
|
|
rembg_session = None,
|
|
force: bool = False,
|
|
**rembg_kwargs,
|
|
) -> PIL.Image.Image:
|
|
do_remove = True
|
|
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
|
|
|
|
print("alhpa channl not enpty, skip remove background, using alpha channel as mask")
|
|
background = Image.new("RGBA", image.size, (0, 0, 0, 0))
|
|
image = Image.alpha_composite(background, image)
|
|
do_remove = False
|
|
do_remove = do_remove or force
|
|
if do_remove:
|
|
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
|
|
return image
|
|
|
|
def do_resize_content(original_image: Image, scale_rate):
|
|
|
|
if scale_rate != 1:
|
|
|
|
new_size = tuple(int(dim * scale_rate) for dim in original_image.size)
|
|
|
|
resized_image = original_image.resize(new_size)
|
|
|
|
padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0))
|
|
paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2)
|
|
padded_image.paste(resized_image, paste_position)
|
|
return padded_image
|
|
else:
|
|
return original_image
|
|
|
|
def add_background(image, bg_color=(255, 255, 255)):
|
|
|
|
background = Image.new("RGBA", image.size, bg_color)
|
|
return Image.alpha_composite(background, image)
|
|
|
|
|
|
def preprocess_image(image, background_choice, foreground_ratio, backgroud_color):
|
|
"""
|
|
input image is a pil image in RGBA, return RGB image
|
|
"""
|
|
print(background_choice)
|
|
if background_choice == "Alpha as mask":
|
|
background = Image.new("RGBA", image.size, (0, 0, 0, 0))
|
|
image = Image.alpha_composite(background, image)
|
|
else:
|
|
image = remove_background(image, rembg_session, force_remove=True)
|
|
image = do_resize_content(image, foreground_ratio)
|
|
image = expand_to_square(image)
|
|
image = add_background(image, backgroud_color)
|
|
return image.convert("RGB")
|
|
|
|
|
|
|
|
|