|
import torch |
|
from libs.base_utils import do_resize_content |
|
from imagedream.ldm.util import ( |
|
instantiate_from_config, |
|
get_obj_from_str, |
|
) |
|
from omegaconf import OmegaConf |
|
from PIL import Image |
|
import numpy as np |
|
from inference import generate3d |
|
from huggingface_hub import hf_hub_download |
|
import json |
|
import argparse |
|
import shutil |
|
from model import CRM |
|
import PIL |
|
import rembg |
|
import os |
|
from pipelines import TwoStagePipeline |
|
|
|
rembg_session = rembg.new_session() |
|
|
|
def expand_to_square(image, bg_color=(0, 0, 0, 0)): |
|
|
|
width, height = image.size |
|
if width == height: |
|
return image |
|
new_size = (max(width, height), max(width, height)) |
|
new_image = Image.new("RGBA", new_size, bg_color) |
|
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2) |
|
new_image.paste(image, paste_position) |
|
return new_image |
|
|
|
def remove_background( |
|
image: PIL.Image.Image, |
|
rembg_session = None, |
|
force: bool = False, |
|
**rembg_kwargs, |
|
) -> PIL.Image.Image: |
|
do_remove = True |
|
if image.mode == "RGBA" and image.getextrema()[3][0] < 255: |
|
|
|
print("alhpa channl not enpty, skip remove background, using alpha channel as mask") |
|
background = Image.new("RGBA", image.size, (0, 0, 0, 0)) |
|
image = Image.alpha_composite(background, image) |
|
do_remove = False |
|
do_remove = do_remove or force |
|
if do_remove: |
|
image = rembg.remove(image, session=rembg_session, **rembg_kwargs) |
|
return image |
|
|
|
def do_resize_content(original_image: Image, scale_rate): |
|
|
|
if scale_rate != 1: |
|
|
|
new_size = tuple(int(dim * scale_rate) for dim in original_image.size) |
|
|
|
resized_image = original_image.resize(new_size) |
|
|
|
padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0)) |
|
paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2) |
|
padded_image.paste(resized_image, paste_position) |
|
return padded_image |
|
else: |
|
return original_image |
|
|
|
def add_background(image, bg_color=(255, 255, 255)): |
|
|
|
background = Image.new("RGBA", image.size, bg_color) |
|
return Image.alpha_composite(background, image) |
|
|
|
|
|
def preprocess_image(image, background_choice, foreground_ratio, backgroud_color): |
|
""" |
|
input image is a pil image in RGBA, return RGB image |
|
""" |
|
print(background_choice) |
|
if background_choice == "Alpha as mask": |
|
background = Image.new("RGBA", image.size, (0, 0, 0, 0)) |
|
image = Image.alpha_composite(background, image) |
|
else: |
|
image = remove_background(image, rembg_session, force_remove=True) |
|
image = do_resize_content(image, foreground_ratio) |
|
image = expand_to_square(image) |
|
image = add_background(image, backgroud_color) |
|
return image.convert("RGB") |
|
|
|
if __name__ == "__main__": |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--inputdir", |
|
type=str, |
|
default="examples/kunkun.webp", |
|
help="dir for input image", |
|
) |
|
parser.add_argument( |
|
"--scale", |
|
type=float, |
|
default=5.0, |
|
) |
|
parser.add_argument( |
|
"--step", |
|
type=int, |
|
default=50, |
|
) |
|
parser.add_argument( |
|
"--bg_choice", |
|
type=str, |
|
default="Auto Remove background", |
|
help="[Auto Remove background] or [Alpha as mask]", |
|
) |
|
parser.add_argument( |
|
"--outdir", |
|
type=str, |
|
default="out/", |
|
) |
|
args = parser.parse_args() |
|
|
|
|
|
img = Image.open(args.inputdir) |
|
img = preprocess_image(img, args.bg_choice, 1.0, (127, 127, 127)) |
|
os.makedirs(args.outdir, exist_ok=True) |
|
img.save(args.outdir+"preprocessed_image.png") |
|
|
|
crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth") |
|
specs = json.load(open("configs/specs_objaverse_total.json")) |
|
model = CRM(specs).to("cuda") |
|
model.load_state_dict(torch.load(crm_path, map_location = "cuda"), strict=False) |
|
|
|
stage1_config = OmegaConf.load("configs/nf7_v3_SNR_rd_size_stroke.yaml").config |
|
stage2_config = OmegaConf.load("configs/stage2-v2-snr.yaml").config |
|
stage2_sampler_config = stage2_config.sampler |
|
stage1_sampler_config = stage1_config.sampler |
|
|
|
stage1_model_config = stage1_config.models |
|
stage2_model_config = stage2_config.models |
|
|
|
xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth") |
|
pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth") |
|
stage1_model_config.resume = pixel_path |
|
stage2_model_config.resume = xyz_path |
|
|
|
pipeline = TwoStagePipeline( |
|
stage1_model_config, |
|
stage2_model_config, |
|
stage1_sampler_config, |
|
stage2_sampler_config, |
|
) |
|
|
|
rt_dict = pipeline(img, scale=args.scale, step=args.step) |
|
stage1_images = rt_dict["stage1_images"] |
|
stage2_images = rt_dict["stage2_images"] |
|
np_imgs = np.concatenate(stage1_images, 1) |
|
np_xyzs = np.concatenate(stage2_images, 1) |
|
Image.fromarray(np_imgs).save(args.outdir+"pixel_images.png") |
|
Image.fromarray(np_xyzs).save(args.outdir+"xyz_images.png") |
|
|
|
glb_path, obj_path = generate3d(model, np_imgs, np_xyzs, "cuda") |
|
shutil.copy(obj_path, args.outdir+"output3d.zip") |