|
import spaces |
|
import argparse |
|
import os |
|
import json |
|
import torch |
|
import sys |
|
import time |
|
import importlib |
|
import numpy as np |
|
from omegaconf import OmegaConf |
|
from huggingface_hub import hf_hub_download |
|
|
|
from collections import OrderedDict |
|
import trimesh |
|
import gradio as gr |
|
from typing import Any |
|
from einops import rearrange |
|
|
|
proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) |
|
sys.path.append(os.path.join(proj_dir)) |
|
|
|
import tempfile |
|
|
|
from apps.utils import * |
|
|
|
_TITLE = '''CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner''' |
|
_DESCRIPTION = ''' |
|
<div> |
|
<span style="color: red;">Important: The ckpt models released have been primarily trained on character data, hence they are likely to exhibit superior performance in this category. We are also planning to release more advanced pretrained models in the future.</span> |
|
<br> |
|
By mimicking the artist/craftsman modeling workflow, we propose CraftsMan (aka ε εΏ) which uses 3D Latent Set Diffusion Model that directly generates coarse meshes, |
|
then a multi-view normal enhanced image generation model is used to refine the mesh. |
|
We provide the coarse 3D diffusion part here. |
|
<br> |
|
If you found CraftsMan is helpful, please help to β the <a href='https://github.com/wyysf-98/CraftsMan/' target='_blank'>Github Repo</a>. Thanks! |
|
<a style="display:inline-block; margin-left: .5em" href='https://github.com/wyysf-98/CraftsMan/'><img src='https://img.shields.io/github/stars/wyysf-98/CraftsMan?style=social' /></a> |
|
<br> |
|
*If you have your own multi-view images, you can directly upload it. |
|
</div> |
|
''' |
|
_CITE_ = r""" |
|
--- |
|
π **Citation** |
|
If you find our work useful for your research or applications, please cite using this bibtex: |
|
```bibtex |
|
@article{li2024craftsman, |
|
author = {Weiyu Li and Jiarui Liu and Rui Chen and Yixun Liang and Xuelin Chen and Ping Tan and Xiaoxiao Long}, |
|
title = {CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner}, |
|
journal = {arXiv preprint arXiv:2405.14979}, |
|
year = {2024}, |
|
} |
|
``` |
|
π€ **Acknowledgements** |
|
We use <a href='https://github.com/wjakob/instant-meshes' target='_blank'>Instant Meshes</a> to remesh the generated mesh to a lower face count, thanks to the authors for the great work. |
|
π **License** |
|
CraftsMan is under [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.en.html), so any downstream solution and products (including cloud services) that include CraftsMan code or a trained model (both pretrained or custom trained) inside it should be open-sourced to comply with the AGPL conditions. If you have any questions about the usage of CraftsMan, please contact us first. |
|
π§ **Contact** |
|
If you have any questions, feel free to open a discussion or contact us at <b>weiyuli.cn@gmail.com</b>. |
|
""" |
|
from apps.third_party.CRM.pipelines import TwoStagePipeline |
|
from apps.third_party.LGM.pipeline_mvdream import MVDreamPipeline |
|
from apps.third_party.Era3D.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline |
|
from apps.third_party.Era3D.data.single_image_dataset import SingleImageDataset |
|
|
|
import re |
|
import os |
|
import stat |
|
|
|
RD, WD, XD = 4, 2, 1 |
|
BNS = [RD, WD, XD] |
|
MDS = [ |
|
[stat.S_IRUSR, stat.S_IRGRP, stat.S_IROTH], |
|
[stat.S_IWUSR, stat.S_IWGRP, stat.S_IWOTH], |
|
[stat.S_IXUSR, stat.S_IXGRP, stat.S_IXOTH] |
|
] |
|
|
|
def chmod(path, mode): |
|
if isinstance(mode, int): |
|
mode = str(mode) |
|
if not re.match("^[0-7]{1,3}$", mode): |
|
raise Exception("mode does not conform to ^[0-7]{1,3}$ pattern") |
|
mode = "{0:0>3}".format(mode) |
|
mode_num = 0 |
|
for midx, m in enumerate(mode): |
|
for bnidx, bn in enumerate(BNS): |
|
if (int(m) & bn) > 0: |
|
mode_num += MDS[bnidx][midx] |
|
os.chmod(path, mode_num) |
|
|
|
chmod(f"{parent_dir}/apps/third_party/InstantMeshes", "777") |
|
|
|
device = None |
|
model = None |
|
cached_dir = None |
|
generator = None |
|
|
|
sys.path.append(f"apps/third_party/CRM") |
|
crm_pipeline = None |
|
|
|
sys.path.append(f"apps/third_party/LGM") |
|
imgaedream_pipeline = None |
|
|
|
sys.path.append(f"apps/third_party/Era3D") |
|
era3d_pipeline = None |
|
|
|
@spaces.GPU(duration=120) |
|
def gen_mvimg( |
|
mvimg_model, image, seed, guidance_scale, step, text, neg_text, elevation, backgroud_color |
|
): |
|
global device |
|
if seed == 0: |
|
seed = np.random.randint(1, 65535) |
|
global generator |
|
generator = torch.Generator(device) |
|
generator.manual_seed(seed) |
|
|
|
if mvimg_model == "CRM": |
|
global crm_pipeline |
|
crm_pipeline.set_seed(seed) |
|
background = Image.new("RGBA", image.size, (127, 127, 127)) |
|
image = Image.alpha_composite(background, image) |
|
mv_imgs = crm_pipeline( |
|
image, |
|
scale=guidance_scale, |
|
step=step |
|
)["stage1_images"] |
|
return mv_imgs[5], mv_imgs[3], mv_imgs[2], mv_imgs[0] |
|
|
|
elif mvimg_model == "ImageDream": |
|
global imagedream_pipeline |
|
background = Image.new("RGBA", image.size, backgroud_color) |
|
image = Image.alpha_composite(background, image) |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4]) |
|
mv_imgs = imagedream_pipeline( |
|
text, |
|
image, |
|
negative_prompt=neg_text, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=step, |
|
elevation=elevation, |
|
generator=generator, |
|
) |
|
return mv_imgs[1], mv_imgs[2], mv_imgs[3], mv_imgs[0] |
|
|
|
elif mvimg_model == "Era3D": |
|
global era3d_pipeline |
|
era3d_pipeline.to(device) |
|
era3d_pipeline.unet.enable_xformers_memory_efficient_attention() |
|
era3d_pipeline.set_progress_bar_config(disable=True) |
|
|
|
crop_size = 420 |
|
batch = SingleImageDataset(root_dir='', num_views=6, img_wh=[512, 512], bg_color='white', |
|
crop_size=crop_size, single_image=image, prompt_embeds_path='apps/third_party/Era3D/data/fixed_prompt_embeds_6view')[0] |
|
imgs_in = torch.cat([batch['imgs_in']]*2, dim=0) |
|
imgs_in = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W") |
|
|
|
normal_prompt_embeddings, clr_prompt_embeddings = batch['normal_prompt_embeddings'], batch['color_prompt_embeddings'] |
|
prompt_embeddings = torch.cat([normal_prompt_embeddings, clr_prompt_embeddings], dim=0) |
|
prompt_embeddings = rearrange(prompt_embeddings, "B Nv N C -> (B Nv) N C") |
|
|
|
imgs_in = imgs_in.to(dtype=torch.float16) |
|
prompt_embeddings = prompt_embeddings.to(dtype=torch.float16) |
|
|
|
mv_imgs = era3d_pipeline( |
|
imgs_in, |
|
None, |
|
prompt_embeds=prompt_embeddings, |
|
generator=generator, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=step, |
|
num_images_per_prompt=1, |
|
**{'eta': 1.0} |
|
).images |
|
return mv_imgs[6], mv_imgs[8], mv_imgs[9], mv_imgs[10] |
|
|
|
@spaces.GPU |
|
def image2mesh(view_front: np.ndarray, |
|
view_right: np.ndarray, |
|
view_back: np.ndarray, |
|
view_left: np.ndarray, |
|
more: bool = False, |
|
scheluder_name: str ="DDIMScheduler", |
|
guidance_scale: int = 7.5, |
|
steps: int = 50, |
|
seed: int = 4, |
|
octree_depth: int = 7): |
|
|
|
sample_inputs = { |
|
"mvimages": [[ |
|
Image.fromarray(view_front), |
|
Image.fromarray(view_right), |
|
Image.fromarray(view_back), |
|
Image.fromarray(view_left) |
|
]] |
|
} |
|
|
|
global model |
|
latents = model.sample( |
|
sample_inputs, |
|
sample_times=1, |
|
guidance_scale=guidance_scale, |
|
return_intermediates=False, |
|
steps=steps, |
|
seed=seed |
|
|
|
)[0] |
|
|
|
|
|
box_v = 1.1 |
|
mesh_outputs, _ = model.shape_model.extract_geometry( |
|
latents, |
|
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v], |
|
octree_depth=octree_depth |
|
) |
|
assert len(mesh_outputs) == 1, "Only support single mesh output for gradio demo" |
|
mesh = trimesh.Trimesh(mesh_outputs[0][0], mesh_outputs[0][1]) |
|
|
|
filepath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name |
|
mesh.export(filepath, include_normals=True) |
|
|
|
if 'Remesh' in more: |
|
remeshed_filepath = tempfile.NamedTemporaryFile(suffix=f"_remeshed.obj", delete=False).name |
|
print("Remeshing with Instant Meshes...") |
|
|
|
target_face_count = 2000 |
|
command = f"{proj_dir}/apps/third_party/InstantMeshes {filepath} -f {target_face_count} -o {remeshed_filepath}" |
|
os.system(command) |
|
filepath = remeshed_filepath |
|
|
|
|
|
return filepath |
|
|
|
if __name__=="__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument("--cached_dir", type=str, default="./gradio_cached_dir") |
|
parser.add_argument("--device", type=int, default=0) |
|
args = parser.parse_args() |
|
|
|
cached_dir = args.cached_dir |
|
os.makedirs(args.cached_dir, exist_ok=True) |
|
device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu") |
|
print(f"using device: {device}") |
|
|
|
|
|
background_choice = OrderedDict({ |
|
"Alpha as Mask": "Alpha as Mask", |
|
"Auto Remove Background": "Auto Remove Background", |
|
"Original Image": "Original Image", |
|
}) |
|
mvimg_model_config_list = [ |
|
"Era3D", |
|
"CRM", |
|
"ImageDream" |
|
] |
|
if "Era3D" in mvimg_model_config_list: |
|
|
|
|
|
|
|
era3d_pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained( |
|
'pengHTYX/MacLab-Era3D-512-6view', |
|
dtype=torch.float16, |
|
) |
|
|
|
|
|
|
|
if "CRM" in mvimg_model_config_list: |
|
stage1_config = OmegaConf.load(f"apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml").config |
|
stage1_sampler_config = stage1_config.sampler |
|
stage1_model_config = stage1_config.models |
|
stage1_model_config.resume = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth", repo_type="model") |
|
stage1_model_config.config = f"apps/third_party/CRM/" + stage1_model_config.config |
|
crm_pipeline = TwoStagePipeline( |
|
stage1_model_config, |
|
stage1_sampler_config, |
|
device=device, |
|
dtype=torch.float16 |
|
) |
|
if "ImageDream" in mvimg_model_config_list: |
|
imagedream_pipeline = MVDreamPipeline.from_pretrained( |
|
"ashawkey/imagedream-ipmv-diffusers", |
|
torch_dtype=torch.float16, |
|
trust_remote_code=True, |
|
) |
|
|
|
|
|
|
|
ckpt_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6-aligned-vae/model.ckpt", repo_type="model") |
|
config_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6-aligned-vae/config.yaml", repo_type="model") |
|
|
|
|
|
scheluder_dict = OrderedDict({ |
|
"DDIMScheduler": 'diffusers.schedulers.DDIMScheduler', |
|
|
|
|
|
}) |
|
|
|
|
|
custom_theme = gr.themes.Soft(primary_hue="blue").set( |
|
button_secondary_background_fill="*neutral_100", |
|
button_secondary_background_fill_hover="*neutral_200") |
|
custom_css = '''#disp_image { |
|
text-align: center; /* Horizontally center the content */ |
|
}''' |
|
|
|
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo: |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
gr.Markdown('# ' + _TITLE) |
|
gr.Markdown(_DESCRIPTION) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
with gr.Column(): |
|
|
|
with gr.Row(): |
|
image_input = gr.Image( |
|
label="Image Input", |
|
image_mode="RGBA", |
|
sources="upload", |
|
type="pil", |
|
) |
|
run_btn = gr.Button('Generate', variant='primary', interactive=True) |
|
|
|
with gr.Row(): |
|
gr.Markdown('''Try a different <b>seed and MV Model</b> for better results. Good Luck :)''') |
|
with gr.Row(): |
|
seed = gr.Number(0, label='Seed', show_label=True) |
|
mvimg_model = gr.Dropdown(value="CRM", label="MV Image Model", choices=list(mvimg_model_config_list)) |
|
more = gr.CheckboxGroup(["Remesh", "Symmetry(TBD)"], label="More", show_label=False) |
|
with gr.Row(): |
|
|
|
text = gr.Textbox(label="Prompt (Opt.)", info="only works for ImageDream") |
|
|
|
with gr.Accordion('Advanced options', open=False): |
|
|
|
neg_text = gr.Textbox(label="Negative Prompt", value='ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate') |
|
|
|
elevation = gr.Slider(label="elevation", minimum=-90, maximum=90, step=1, value=0) |
|
|
|
with gr.Row(): |
|
gr.Examples( |
|
examples=[os.path.join("./apps/examples", i) for i in os.listdir("./apps/examples")], |
|
inputs=[image_input], |
|
examples_per_page=8 |
|
) |
|
|
|
with gr.Column(scale=4): |
|
with gr.Row(): |
|
output_model_obj = gr.Model3D( |
|
label="Output Model (OBJ Format)", |
|
camera_position=(90.0, 90.0, 3.5), |
|
interactive=False, |
|
) |
|
with gr.Row(): |
|
gr.Markdown('''*please note that the model is fliped due to the gradio viewer, please download the obj file and you will get the correct orientation.''') |
|
|
|
with gr.Row(): |
|
view_front = gr.Image(label="Front", interactive=True, show_label=True) |
|
view_right = gr.Image(label="Right", interactive=True, show_label=True) |
|
view_back = gr.Image(label="Back", interactive=True, show_label=True) |
|
view_left = gr.Image(label="Left", interactive=True, show_label=True) |
|
|
|
with gr.Accordion('Advanced options', open=False): |
|
with gr.Row(equal_height=True): |
|
run_mv_btn = gr.Button('Only Generate 2D', interactive=True) |
|
run_3d_btn = gr.Button('Only Generate 3D', interactive=True) |
|
|
|
with gr.Accordion('Advanced options (2D)', open=False): |
|
with gr.Row(): |
|
foreground_ratio = gr.Slider( |
|
label="Foreground Ratio", |
|
minimum=0.5, |
|
maximum=1.0, |
|
value=1.0, |
|
step=0.05, |
|
) |
|
|
|
with gr.Row(): |
|
background_choice = gr.Dropdown(label="Backgroud Choice", value="Auto Remove Background",choices=list(background_choice.keys())) |
|
rmbg_type = gr.Dropdown(label="Backgroud Remove Type", value="rembg",choices=['sam', "rembg"]) |
|
backgroud_color = gr.ColorPicker(label="Background Color", value="#FFFFFF", interactive=True) |
|
|
|
|
|
with gr.Row(): |
|
mvimg_guidance_scale = gr.Number(value=3.0, minimum=1, maximum=10, label="2D Guidance Scale") |
|
mvimg_steps = gr.Number(value=30, minimum=20, maximum=100, label="2D Sample Steps") |
|
|
|
with gr.Accordion('Advanced options (3D)', open=False): |
|
with gr.Row(): |
|
guidance_scale = gr.Number(label="3D Guidance Scale", value=3.0, minimum=1.0, maximum=10.0) |
|
steps = gr.Number(value=50, minimum=20, maximum=100, label="3D Sample Steps") |
|
|
|
with gr.Row(): |
|
scheduler = gr.Dropdown(label="scheluder", value="DDIMScheduler",choices=list(scheluder_dict.keys())) |
|
octree_depth = gr.Slider(label="Octree Depth", value=7, minimum=4, maximum=8, step=1) |
|
|
|
gr.Markdown(_CITE_) |
|
|
|
outputs = [output_model_obj] |
|
rmbg = RMBG(device) |
|
|
|
model = load_model(ckpt_path, config_path, device) |
|
|
|
run_btn.click(fn=check_input_image, inputs=[image_input] |
|
).success( |
|
fn=rmbg.run, |
|
inputs=[rmbg_type, image_input, foreground_ratio, background_choice, backgroud_color], |
|
outputs=[image_input] |
|
).success( |
|
fn=gen_mvimg, |
|
inputs=[mvimg_model, image_input, seed, mvimg_guidance_scale, mvimg_steps, text, neg_text, elevation, backgroud_color], |
|
outputs=[view_front, view_right, view_back, view_left] |
|
).success( |
|
fn=image2mesh, |
|
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, steps, seed, octree_depth], |
|
outputs=outputs, |
|
api_name="generate_img2obj") |
|
run_mv_btn.click(fn=gen_mvimg, |
|
inputs=[mvimg_model, image_input, seed, mvimg_guidance_scale, mvimg_steps, text, neg_text, elevation, backgroud_color], |
|
outputs=[view_front, view_right, view_back, view_left] |
|
) |
|
run_3d_btn.click(fn=image2mesh, |
|
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, steps, seed, octree_depth], |
|
outputs=outputs, |
|
api_name="generate_img2obj") |
|
|
|
demo.queue().launch(share=True, allowed_paths=[args.cached_dir]) |