Update dataframe.py
Browse files- dataframe.py +65 -11
dataframe.py
CHANGED
@@ -1,14 +1,68 @@
|
|
1 |
import pandas as pd
|
2 |
-
|
3 |
|
4 |
-
#
|
5 |
@st.cache_data(ttl=3600)
|
6 |
-
def
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
+
import streamlit as st # <-- Make sure this import is present
|
3 |
|
4 |
+
# Cache the data loading process for efficiency
|
5 |
@st.cache_data(ttl=3600)
|
6 |
+
def fetch_data():
|
7 |
+
# URL of the website to scrape
|
8 |
+
url = "https://www.ireland.ie/en/india/newdelhi/services/visas/processing-times-and-decisions/"
|
9 |
+
headers = {
|
10 |
+
"User-Agent": (
|
11 |
+
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 "
|
12 |
+
"(KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36"
|
13 |
+
)
|
14 |
+
}
|
15 |
+
|
16 |
+
# Fetch the webpage
|
17 |
+
response = requests.get(url, headers=headers)
|
18 |
+
if response.status_code != 200:
|
19 |
+
st.error("Failed to fetch the webpage. Please try again later.")
|
20 |
+
return None
|
21 |
+
|
22 |
+
# Parse the HTML to find the .ods link
|
23 |
+
soup = BeautifulSoup(response.content, "html.parser")
|
24 |
+
file_url = None
|
25 |
+
for link in soup.find_all("a"):
|
26 |
+
if "Visa decisions made from" in link.get_text():
|
27 |
+
file_url = link.get("href")
|
28 |
+
if not file_url.startswith("http"):
|
29 |
+
file_url = requests.compat.urljoin(url, file_url)
|
30 |
+
break
|
31 |
+
|
32 |
+
if not file_url:
|
33 |
+
st.error("Could not find the visa decisions file link on the website.")
|
34 |
+
return None
|
35 |
+
|
36 |
+
# Fetch the .ods file
|
37 |
+
ods_response = requests.get(file_url, headers=headers)
|
38 |
+
if ods_response.status_code != 200:
|
39 |
+
st.error("Failed to download the visa decisions file.")
|
40 |
+
return None
|
41 |
+
|
42 |
+
# Process the .ods file
|
43 |
+
ods_file = BytesIO(ods_response.content)
|
44 |
+
df = pd.read_excel(ods_file, engine="odf")
|
45 |
+
|
46 |
+
# Print columns to inspect what they look like
|
47 |
+
print("Columns before cleaning:", df.columns.tolist()) # For debugging purposes
|
48 |
+
|
49 |
+
# Drop unnecessary columns
|
50 |
+
df.dropna(how="all", inplace=True) # Drop rows with all NaN values
|
51 |
+
df.reset_index(drop=True, inplace=True)
|
52 |
+
|
53 |
+
# Print columns after cleaning
|
54 |
+
print("Columns after cleaning:", df.columns.tolist()) # For debugging purposes
|
55 |
+
|
56 |
+
# If we have extra columns, drop them
|
57 |
+
if len(df.columns) > 2:
|
58 |
+
df = df.iloc[:, :2] # Keep only the first two columns
|
59 |
+
|
60 |
+
# Rename columns if they match the expected ones
|
61 |
+
if len(df.columns) == 2:
|
62 |
+
df.columns = ["Application Number", "Decision"]
|
63 |
+
else:
|
64 |
+
st.error("Insufficient data columns detected.")
|
65 |
+
return None
|
66 |
+
|
67 |
+
df["Application Number"] = df["Application Number"].astype(str)
|
68 |
+
return df
|