File size: 18,366 Bytes
4c7982b
 
 
 
 
be1543a
 
 
33a6f85
4c7982b
be1543a
4c7982b
 
9199665
33a6f85
 
845a45a
33a6f85
 
 
 
 
845a45a
33a6f85
4c7982b
 
845a45a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c7982b
 
 
 
 
 
 
 
 
845a45a
4c7982b
be1543a
 
 
4c7982b
be1543a
 
 
4c7982b
be1543a
 
 
 
 
 
 
 
 
 
 
845a45a
4c7982b
 
 
 
 
 
 
 
 
 
 
be1543a
4c7982b
be1543a
4c7982b
be1543a
 
 
 
 
 
 
 
 
845a45a
be1543a
 
 
 
 
4c7982b
be1543a
 
 
 
9199665
be1543a
 
 
075ef98
9199665
075ef98
4c7982b
 
 
be1543a
4c7982b
 
 
 
 
 
 
 
 
 
33a6f85
be1543a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845a45a
 
be1543a
 
 
 
 
 
 
 
 
 
 
 
 
33a6f85
 
 
 
 
 
 
 
 
a034e31
4c7982b
 
 
33a6f85
be1543a
 
4c7982b
a034e31
 
 
 
 
 
 
 
 
 
 
 
4c7982b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be1543a
9199665
 
 
be1543a
 
 
 
 
4c7982b
be1543a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9199665
 
 
 
 
 
 
 
 
 
33a6f85
be1543a
 
9199665
 
 
 
 
 
 
 
 
 
 
 
 
 
be1543a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9199665
be1543a
 
 
 
 
 
 
 
 
 
 
 
 
9199665
33a6f85
be1543a
 
9199665
 
 
 
 
 
 
 
 
 
 
 
 
 
be1543a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
from dataclasses import dataclass, field
from datasets import load_dataset, Dataset
from functools import cached_property
from tqdm.auto import tqdm
from typing import Any, Optional, Protocol, Iterable, Callable
import logging
import pandas as pd
from functools import partial
from datasets.utils.logging import disable_progress_bar

from .utils import *

from evaluate import load
from collections import defaultdict
import sys


# if sys.version_info >= (3, 9):
#     from functools import cache
# else:
#     from functools import lru_cache as cache


disable_progress_bar()


def mt_bench_prompt(example):
    judge_prompt = "You are ChatGPT, a large language model trained by OpenAI. Please act as an impartial judge and evaluate the quality of the response provided by an AI assistant to the user question displayed below. The  Your evaluation should consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and level of detail of the response."
    judge_prompt = "You are ChatGPT, a large language model trained by OpenAI. Your task is to act as an impartial judge and evaluate the quality of the responses provided by an 'assistant' role in the displayed conversation. Your evaluation should focus on the helpfulness, relevance, accuracy, depth, creativity, language fluency, clarity, and level of detail in the assistant's responses. Please note that the evaluation should not consider the user's questions or the overall conversation, but solely the quality of the assistant's replies."
    multi_prompt = "You evaluation should focus on the assistant's answer to the second user question."
    ref_prompt = "In the conversation, you will encounter system messages labeled 'Reference Answer' followed by the assistant's response. Your task is to evaluate the quality of the assistant's response by comparing it with the reference answer."
    json_prompt = 'You must rate the response on a scale of 1 to 10 in JSON format, for example: {"rating": 5}.'
    prompt_list = [judge_prompt]
    conversations = example["conversation"]
    if example["turn"] == 2:
        prompt_list.append(multi_prompt)

    if example["reference"] is not None:
        conversations = []
        quesiotns = filter(lambda e: e["role"] == "user", example["conversation"])
        answers = filter(lambda e: e["role"] == "assistant", example["conversation"])
        for q, a, r in zip(quesiotns, answers, example["reference"]):
            conversations.append(q)
            conversations.append(
                {"role": "system", "content": "Reference Answer: " + r}
            )
            conversations.append(a)
        prompt_list.append(ref_prompt)
    prompt_list.append(json_prompt)

    messages = [{"role": "system", "content": " ".join(prompt_list)}] + conversations
    return messages


@dataclass
class Task:
    dataset_name: str | tuple[str, str] = ("gsm8k", "main")
    split: str = "test"
    # metrics: list[str] = field(default_factory=list)
    metric_name: str | tuple[str, str] = ("sustech/tlem", "gsm8k")
    input_column: str = "question"
    label_column: str = ""
    prompt: Optional[Callable | str] = None
    few_shot: int = 0
    few_shot_from: Optional[str] = None
    # results: dict[str, Any] = field(default_factory=dict)

    def __post_init__(self):
        names = (
            [self.dataset_name]
            if isinstance(self.dataset_name, str)
            else list(self.dataset_name)
        )
        names[0] = names[0].split("/")[-1]

        self.name = "-".join(names) + f"-{self.split}"
        if isinstance(self.prompt, str):
            self.prompt = lambda example: {
                self.input_column: self.prompt.format(
                    input_column=example[self.input_column]
                )
            }
        self.label_column = self.label_column or self.input_column

    @cached_property
    def samples(self):
        return self.dataset[self.input_column]

    @cached_property
    def dataset(self):
        ds = load_dataset(
            *self.dataset_name
            if isinstance(self.dataset_name, tuple)
            else self.dataset_name,
            # split=self.split,
        )
        test_ds = ds[self.split]
        if self.prompt is not None:
            test_ds = test_ds.map(self.prompt)

        if self.few_shot:
            if self.few_shot_from is None:
                for name in ["train", "validation", "val", "dev"]:
                    if name in ds:
                        self.few_shot_from = name
                        break

            assert self.few_shot_from != self.split
            shots = ds[self.few_shot_from].select(range(self.few_shot))
            if self.prompt is not None:
                shots = shots.map(self.prompt)

            shots = shots.map(
                lambda example: {
                    self.input_column: example[self.input_column]
                    + example[self.label_column],
                }
            )[self.input_column]
            few_shot_prompts = "\n\n".join(shots)

            test_ds = test_ds.map(
                lambda example: {
                    self.input_column: few_shot_prompts
                    + "\n\n"
                    + example[self.input_column],
                }
            )

        return test_ds

    @cached_property
    def metric(self):
        metric = (
            load(self.metric_name)
            if isinstance(self.metric_name, str)
            else load(*self.metric_name)
        )
        return metric

    # @cache
    def run(
        self,
        pipeline,
    ):
        if (outputs := pipeline(self.samples)) is None:
            logging.warning("pipeline returns None")
            return
        self.outputs = outputs
        try:
            result = self.metric._compute(
                responses=outputs, references=self.dataset[self.label_column]
            )
        except Exception as e:
            result = self.metric.compute(
                responses=outputs, references=self.dataset[self.label_column]
            )
        finally:
            result = outputs
        # if log:
        #     name = name or pipeline.__name__
        #     self.results[name] = result

        return result


def multichoice(responses: Any, references: list[str]):
    if isinstance(responses[0], str):
        responses = [extract_choice(response) for response in responses]
    else:
        responses = decode_choice(responses)

    return responses, references


def multichoice_zh(responses: Any, references: list[str]):
    if isinstance(responses[0], str):
        responses = [extract_choice_zh(response) for response in responses]
    else:
        responses = decode_choice(responses)

    return responses, references


class Metrics:
    cmmlu = multichoice_zh
    mmlu = multichoice

    def gsm8k(responses: list[str], answers: list[str | int]):
        # scores = []
        # for response, answer in zip(responses, answers):
        #     pred = extract_numeric(response)
        #     gold = extract_numeric(answer) if isinstance(answer, str) else str(answer)
        #     scores.append(1.0 * (pred == gold))
        responses = [extract_numeric(response) for response in responses]
        answers = [
            extract_numeric(answer) if isinstance(answer, str) else str(answer)
            for answer in answers
        ]

        return responses, answers

    def MATH(responses: list[str], answers: list[str]):
        scores = []

        for response, answer in zip(responses, answers):
            indices = [pos for pos, char in enumerate(response) if char == "$"]
            if len(indices) <= 2:
                scores.append(0)
                continue
            else:
                result = response[indices[-2] + 1 : indices[-1]]
                gold = get_answer(answer)
                scores.append(1.0 * is_equiv(result, gold))

        return scores

    def math23k(responses: list[str], answers: list[str]):
        scores = []
        for response, answer in zip(responses, answers):
            pred = extract_numeric(response, pattern=NUMERIC_IN_ZH)
            gold = extract_numeric(answer, pattern=NUMERIC_IN_ZH)
            scores.append(1.0 * (pred == gold))
        return scores


class CMMLU:
    input_column = "prompt"
    label_column = "Answer"

    def prompt_cmmlu(example, chat=False):
        prefix = "以下是一道多项选择题,请从A、B、C和D中选择最合适的答案作为这个问题的答案。\n\n" if chat else "问题:"
        prompt = prefix + example["Question"]
        for choice in list("ABCD"):
            prompt += f"\n{choice}. {example[choice]}"

            prompt += "\n答案:"
        return {"prompt": prompt}

    subcategories = {
        "agronomy": ["other"],
        "anatomy": ["biology"],
        "ancient_chinese": ["linguistics", "china specific"],
        "arts": ["arts"],
        "astronomy": ["physics"],
        "business_ethics": ["business"],
        "chinese_civil_service_exam": ["politics", "china specific"],
        "chinese_driving_rule": ["other", "china specific"],
        "chinese_food_culture": ["culture", "china specific"],
        "chinese_foreign_policy": ["politics", "china specific"],
        "chinese_history": ["history", "china specific"],
        "chinese_literature": ["literature", "china specific"],
        "chinese_teacher_qualification": ["education", "china specific"],
        "college_actuarial_science": ["math"],
        "college_education": ["education"],
        "college_engineering_hydrology": ["engineering"],
        "college_law": ["law"],
        "college_mathematics": ["math"],
        "college_medical_statistics": ["statistics"],
        "clinical_knowledge": ["other"],
        "college_medicine": ["other"],
        "computer_science": ["computer science"],
        "computer_security": ["other"],
        "conceptual_physics": ["physics"],
        "construction_project_management": ["other", "china specific"],
        "economics": ["economics"],
        "education": ["education"],
        "elementary_chinese": ["linguistics", "china specific"],
        "elementary_commonsense": ["other", "china specific"],
        "elementary_information_and_technology": ["other"],
        "electrical_engineering": ["engineering"],
        "elementary_mathematics": ["math"],
        "ethnology": ["culture", "china specific"],
        "food_science": ["other"],
        "genetics": ["biology"],
        "global_facts": ["global"],
        "high_school_biology": ["biology"],
        "high_school_chemistry": ["chemistry"],
        "high_school_geography": ["geography"],
        "high_school_mathematics": ["math"],
        "high_school_physics": ["physics"],
        "high_school_politics": ["politics", "china specific"],
        "human_sexuality": ["other"],
        "international_law": ["law"],
        "journalism": ["sociology"],
        "jurisprudence": ["law"],
        "legal_and_moral_basis": ["other"],
        "logical": ["philosophy"],
        "machine_learning": ["computer science"],
        "management": ["business"],
        "marketing": ["business"],
        "marxist_theory": ["philosophy"],
        "modern_chinese": ["linguistics", "china specific"],
        "nutrition": ["other"],
        "philosophy": ["philosophy"],
        "professional_accounting": ["business"],
        "professional_law": ["law"],
        "professional_medicine": ["other"],
        "professional_psychology": ["psychology"],
        "public_relations": ["politics"],
        "security_study": ["politics"],
        "sociology": ["culture"],
        "sports_science": ["other"],
        "traditional_chinese_medicine": ["other", "china specific"],
        "virology": ["biology"],
        "world_history": ["history"],
        "world_religions": ["global"],
    }

    categories = {
        "STEM": [
            "physics",
            "chemistry",
            "biology",
            "computer science",
            "math",
            "engineering",
            "statistics",
        ],
        "Humanities": ["history", "philosophy", "law", "arts", "literature", "global"],
        "Social Science": [
            "linguistics",
            "business",
            "politics",
            "culture",
            "economics",
            "geography",
            "psychology",
            "education",
            "sociology",
        ],
        "Other": ["other"],
        "China specific": ["china specific"],
        "Test": ["computer science"],
    }

    @classmethod
    def suite(cls, chat=False):
        finer_categories = (
            pd.Series(cls.subcategories)  # noqa # type: ignore
            .explode()
            .reset_index()
            .set_index(0)
            .groupby(0)
            .agg(list)["index"]
            .to_dict()
        )
        suite = defaultdict(list)
        cls.categories["all"] = list(finer_categories.keys())
        for k, v in cls.categories.items():
            for subject in v:
                suite[k].extend(
                    [
                        Task(
                            ("haonan-li/cmmlu", subcategories),
                            metric_name=("sustech/tlem", "cmmlu"),
                            input_column=cls.input_column,
                            label_column=cls.label_column,
                            prompt=partial(cls.prompt_cmmlu, chat=chat),
                            few_shot=0 if chat else 5,
                            few_shot_from="dev",
                        )
                        for subcategories in finer_categories[subject]
                    ]
                )
        return suite


class MMLU:
    input_column = "prompt"
    label_column = "target"

    @classmethod
    def prompt_mmlu(cls, example, chat=False):
        prefix = (
            "The following is a multiple-choice question. Please choose the most suitable one among A, B, C and D as the answer to this question.\n\n"
            if chat
            else "Question: "
        )
        prompt = prefix + example["input"]
        for choice in list("ABCD"):
            prompt += f"\n{choice}. {example[choice]}"

        prompt += "\nAnswer:"
        return {"prompt": prompt}

    subcategories = {
        "abstract_algebra": ["math"],
        "anatomy": ["health"],
        "astronomy": ["physics"],
        "business_ethics": ["business"],
        "clinical_knowledge": ["health"],
        "college_biology": ["biology"],
        "college_chemistry": ["chemistry"],
        "college_computer_science": ["computer science"],
        "college_mathematics": ["math"],
        "college_medicine": ["health"],
        "college_physics": ["physics"],
        "computer_security": ["computer science"],
        "conceptual_physics": ["physics"],
        "econometrics": ["economics"],
        "electrical_engineering": ["engineering"],
        "elementary_mathematics": ["math"],
        "formal_logic": ["philosophy"],
        "global_facts": ["other"],
        "high_school_biology": ["biology"],
        "high_school_chemistry": ["chemistry"],
        "high_school_computer_science": ["computer science"],
        "high_school_european_history": ["history"],
        "high_school_geography": ["geography"],
        "high_school_government_and_politics": ["politics"],
        "high_school_macroeconomics": ["economics"],
        "high_school_mathematics": ["math"],
        "high_school_microeconomics": ["economics"],
        "high_school_physics": ["physics"],
        "high_school_psychology": ["psychology"],
        "high_school_statistics": ["math"],
        "high_school_us_history": ["history"],
        "high_school_world_history": ["history"],
        "human_aging": ["health"],
        "human_sexuality": ["culture"],
        "international_law": ["law"],
        "jurisprudence": ["law"],
        "logical_fallacies": ["philosophy"],
        "machine_learning": ["computer science"],
        "management": ["business"],
        "marketing": ["business"],
        "medical_genetics": ["health"],
        "miscellaneous": ["other"],
        "moral_disputes": ["philosophy"],
        "moral_scenarios": ["philosophy"],
        "nutrition": ["health"],
        "philosophy": ["philosophy"],
        "prehistory": ["history"],
        "professional_accounting": ["other"],
        "professional_law": ["law"],
        "professional_medicine": ["health"],
        "professional_psychology": ["psychology"],
        "public_relations": ["politics"],
        "security_studies": ["politics"],
        "sociology": ["culture"],
        "us_foreign_policy": ["politics"],
        "virology": ["health"],
        "world_religions": ["philosophy"],
    }

    categories = {
        "STEM": [
            "physics",
            "chemistry",
            "biology",
            "computer science",
            "math",
            "engineering",
        ],
        "humanities": ["history", "philosophy", "law"],
        "social sciences": [
            "politics",
            "culture",
            "economics",
            "geography",
            "psychology",
        ],
        "other": ["other", "business", "health"],
    }

    @classmethod
    def suite(cls, chat=False):
        finer_categories = (
            pd.Series(cls.subcategories)  # noqa # type: ignore
            .explode()
            .reset_index()
            .set_index(0)
            .groupby(0)
            .agg(list)["index"]
            .to_dict()
        )
        suite = defaultdict(list)
        cls.categories["all"] = list(finer_categories.keys())
        for k, v in cls.categories.items():
            for subject in v:
                suite[k].extend(
                    [
                        Task(
                            ("lukaemon/mmlu", subcategories),
                            metric_name=("sustech/tlem", "mmlu"),
                            input_column=cls.input_column,
                            label_column=cls.label_column,
                            prompt=partial(cls.prompt_mmlu, chat=chat),
                            few_shot=0 if chat else 5,
                            few_shot_from="validation",
                        )
                        for subcategories in finer_categories[subject]
                    ]
                )
        return suite