Spaces:
Running
Running
File size: 38,731 Bytes
4c7982b d13c0d8 4c7982b d13c0d8 be1543a 33a6f85 4c7982b be1543a 4c7982b 9199665 33a6f85 0c75eca 33a6f85 845a45a 33a6f85 845a45a 33a6f85 4c7982b 845a45a 4c7982b 845a45a 4c7982b be1543a 232b173 4c7982b be1543a 4c7982b be1543a 0c75eca be1543a 76eab85 be1543a 76eab85 be1543a 845a45a 0f420dd 4c7982b f2c1a54 4c7982b 76eab85 4c7982b 76eab85 4c7982b be1543a 4c7982b be1543a 845a45a be1543a 141ccb9 be1543a 4c7982b be1543a 9199665 be1543a 075ef98 9199665 075ef98 4c7982b be1543a 4c7982b 3a8c0d0 360e3ac 3a8c0d0 360e3ac 3a8c0d0 33a6f85 be1543a 3a8c0d0 be1543a 3a8c0d0 be1543a f21585c be1543a 33a6f85 a034e31 4c7982b 33a6f85 be1543a d13c0d8 141ccb9 25e4875 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 c6f1343 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 be1543a 4c7982b a034e31 4c7982b 9827786 4c7982b be1543a 9199665 be1543a 4c7982b be1543a 9199665 33a6f85 be1543a 9199665 be1543a 9199665 be1543a 9199665 33a6f85 be1543a 9199665 be1543a 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 c6f1343 d13c0d8 141ccb9 d13c0d8 0c75eca 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 d13c0d8 141ccb9 25e4875 141ccb9 d13c0d8 141ccb9 d13c0d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 |
from dataclasses import dataclass, field
from datasets import load_dataset, Dataset
from functools import cached_property
from tqdm.auto import tqdm
from typing import Any, Optional, Callable
import logging
import pandas as pd
from functools import partial
from datasets.utils.logging import disable_progress_bar
from .utils import *
from evaluate import load
from collections import defaultdict
import sys
from pathlib import Path
# if sys.version_info >= (3, 9):
# from functools import cache
# else:
# from functools import lru_cache as cache
disable_progress_bar()
def mt_bench_prompt(example):
judge_prompt = "You are ChatGPT, a large language model trained by OpenAI. Please act as an impartial judge and evaluate the quality of the response provided by an AI assistant to the user question displayed below. The Your evaluation should consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and level of detail of the response."
judge_prompt = "You are ChatGPT, a large language model trained by OpenAI. Your task is to act as an impartial judge and evaluate the quality of the responses provided by an 'assistant' role in the displayed conversation. Your evaluation should focus on the helpfulness, relevance, accuracy, depth, creativity, language fluency, clarity, and level of detail in the assistant's responses. Please note that the evaluation should not consider the user's questions or the overall conversation, but solely the quality of the assistant's replies."
multi_prompt = "You evaluation should focus on the assistant's answer to the second user question."
ref_prompt = "In the conversation, you will encounter system messages labeled 'Reference Answer' followed by the assistant's response. Your task is to evaluate the quality of the assistant's response by comparing it with the reference answer."
json_prompt = 'You must rate the response on a scale of 1 to 10 in JSON format, for example: {"rating": 5}.'
prompt_list = [judge_prompt]
conversations = example["conversation"]
if example["turn"] == 2:
prompt_list.append(multi_prompt)
if example["reference"] is not None:
conversations = []
quesiotns = filter(lambda e: e["role"] == "user", example["conversation"])
answers = filter(lambda e: e["role"] == "assistant", example["conversation"])
for q, a, r in zip(quesiotns, answers, example["reference"]):
conversations.append(q)
conversations.append(
{"role": "system", "content": "Reference Answer: " + r}
)
conversations.append(a)
prompt_list.append(ref_prompt)
prompt_list.append(json_prompt)
messages = [{"role": "system", "content": " ".join(prompt_list)}] + conversations
return messages
@dataclass
class Task:
dataset_name: str | tuple[str, str] = ("gsm8k", "main")
split: str = "test"
# metrics: list[str] = field(default_factory=list)
metric_name: str | tuple[str, str] = ("sustech/tlem", "gsm8k")
input_column: str = "question"
label_column: str = ""
prompt: Optional[Callable | str] = None
few_shot: int = 0
few_shot_from: Optional[str] = None
# results: dict[str, Any] = field(default_factory=dict)
# outputs: Optional[list] = field(default_factory=list)
def __post_init__(self):
names = (
[self.dataset_name]
if isinstance(self.dataset_name, str)
else list(self.dataset_name)
)
names[0] = Path(names[0]).name
self.name = "-".join(names) + f"-{self.split}"
if isinstance(self.prompt, str):
prompt_format = self.prompt
self.prompt = lambda example: {
self.input_column: prompt_format.format(
input_column=example[self.input_column]
)
}
self.label_column = self.label_column or self.input_column
self.outputs = []
def __eq__(self, __value: object) -> bool:
return self.name == __value.name
@cached_property
def samples(self):
return self.dataset[self.input_column]
@cached_property
def dataset(self):
ds = (
load_dataset(
*self.dataset_name,
)
if isinstance(self.dataset_name, tuple)
else load_dataset(self.dataset_name)
)
test_ds = ds[self.split]
if self.prompt is not None:
test_ds = test_ds.map(self.prompt)
if self.few_shot:
if self.few_shot_from is None:
for name in ["train", "validation", "val", "dev"]:
if name in ds:
self.few_shot_from = name
break
assert self.few_shot_from != self.split
shots = ds[self.few_shot_from].select(range(self.few_shot))
# else:
# shots = ds.select(range(self.few_shot))
if self.prompt is not None:
shots = shots.map(self.prompt)
shots = shots.map(
lambda example: {
self.input_column: example[self.input_column]
+ example[self.label_column],
}
)[self.input_column]
few_shot_prompts = "\n\n".join(shots)
test_ds = test_ds.map(
lambda example: {
self.input_column: few_shot_prompts
+ "\n\n"
+ example[self.input_column],
}
)
return test_ds
@cached_property
def metric(self):
metric = (
load(self.metric_name)
if isinstance(self.metric_name, str)
else load(*self.metric_name)
)
return metric
@cached_property
def result(self) -> dict:
assert self.outputs, "Please run the task first."
results = self.metric._compute(
responses=self.outputs, references=self.dataset[self.label_column]
)
logging.info(f"{self.name}:{results}")
return results
# @cache
def run(
self,
pipeline,
):
self.outputs = self.outputs or pipeline(self.samples)
return self.result
async def arun(self, pipeline):
self.outputs = self.outputs or await pipeline(self.samples)
return self.result
def multichoice(responses: Any, references: list[str]):
if isinstance(responses[0], str):
responses = [extract_choice(response) for response in responses]
else:
responses = decode_choice(responses)
return responses, references
def multichoice_zh(responses: Any, references: list[str]):
if isinstance(responses[0], str):
responses = [extract_choice_zh(response) for response in responses]
else:
responses = decode_choice(responses)
return responses, references
class Metrics:
cmmlu = multichoice_zh
mmlu = multichoice
def ceval(responses: list[str], answers: list[str | int]):
responses = [extract_choice_zh(pred) for pred in responses]
return responses, answers
def winogrande(responses: list[str], answers: list[str | int]):
responses = [first_option_postprocess(pred, options="AB") for pred in responses]
return responses, answers
def arc(responses: list[str], answers: list[str | int]):
if len(responses) != len(answers):
return {"error": "predictions and references have different " "length"}
responses = [
first_option_postprocess(pred, options="ABCD") for pred in responses
]
return responses, answers
def hellaswag(responses: list[str], answers: list[str | int]):
if len(responses) != len(answers):
return {"error": "predictions and references have different " "length"}
responses = [
first_option_postprocess(pred, options="ABCD") for pred in responses
]
answers = ["ABCD"[int(ans)] for ans in answers]
return responses, answers
def drop(responses: list[str], answers: list[list]):
if len(responses) != len(answers):
return {"error": "predictions and references have different " "length"}
responses = [general_postprocess(pred) for pred in responses]
processed_answers = [[general_postprocess(j) for j in i] for i in answers]
scores = []
for pred, ans in zip(responses, processed_answers):
score = np.mean([1 if a in pred else 0 for a in ans])
scores.append(score)
return {"em": np.mean(scores)}
def bbh_mcq(responses: list[str], answers: list[str | int]):
if len(responses) != len(answers):
return {"error": "predictions and references have different " "length"}
responses = [bbh_mcq_postprocess(pred) for pred in responses]
return responses, answers
def bbh_freefrom(responses: list[str], answers: list[str | int]):
if len(responses) != len(answers):
return {"error": "predictions and references have different " "length"}
responses = [bbh_freeform_postprocess(pred) for pred in responses]
return responses, answers
def gsm8k(responses: list[str], answers: list[str | int]):
# scores = []
# for response, answer in zip(responses, answers):
# pred = extract_numeric(response)
# gold = extract_numeric(answer) if isinstance(answer, str) else str(answer)
# scores.append(1.0 * (pred == gold))
responses = [extract_numeric(response) for response in responses]
answers = [
extract_numeric(answer) if isinstance(answer, str) else str(answer)
for answer in answers
]
return responses, answers
def MATH(responses: list[str], answers: list[str]):
extract_responses = sync_pipe(get_answer)(responses)
extract_answers = sync_pipe(get_answer)(answers)
try:
from math_equivalence import is_equiv
except ImportError as e:
logging.warning(
"math_equivalence not installed, pip install git+https://github.com/hendrycks/math.git"
)
raise e
return sync_pipe(is_equiv)(zip(extract_responses, extract_answers))
class CMMLU:
input_column = "prompt"
label_column = "Answer"
def prompt_cmmlu(example, chat=False):
prefix = "以下是一道多项选择题,请从A、B、C和D中选择最合适的答案作为这个问题的答案。\n\n" if chat else "问题:"
prompt = prefix + example["Question"]
for choice in list("ABCD"):
prompt += f"\n{choice}. {example[choice]}"
prompt += "\n答案:"
return {"prompt": prompt}
subcategories = {
"agronomy": ["other"],
"anatomy": ["biology"],
"ancient_chinese": ["linguistics", "china specific"],
"arts": ["arts"],
"astronomy": ["physics"],
"business_ethics": ["business"],
"chinese_civil_service_exam": ["politics", "china specific"],
"chinese_driving_rule": ["other", "china specific"],
"chinese_food_culture": ["culture", "china specific"],
"chinese_foreign_policy": ["politics", "china specific"],
"chinese_history": ["history", "china specific"],
"chinese_literature": ["literature", "china specific"],
"chinese_teacher_qualification": ["education", "china specific"],
"college_actuarial_science": ["math"],
"college_education": ["education"],
"college_engineering_hydrology": ["engineering"],
"college_law": ["law"],
"college_mathematics": ["math"],
"college_medical_statistics": ["statistics"],
"clinical_knowledge": ["other"],
"college_medicine": ["other"],
"computer_science": ["computer science"],
"computer_security": ["other"],
"conceptual_physics": ["physics"],
"construction_project_management": ["other", "china specific"],
"economics": ["economics"],
"education": ["education"],
"elementary_chinese": ["linguistics", "china specific"],
"elementary_commonsense": ["other", "china specific"],
"elementary_information_and_technology": ["other"],
"electrical_engineering": ["engineering"],
"elementary_mathematics": ["math"],
"ethnology": ["culture", "china specific"],
"food_science": ["other"],
"genetics": ["biology"],
"global_facts": ["global"],
"high_school_biology": ["biology"],
"high_school_chemistry": ["chemistry"],
"high_school_geography": ["geography"],
"high_school_mathematics": ["math"],
"high_school_physics": ["physics"],
"high_school_politics": ["politics", "china specific"],
"human_sexuality": ["other"],
"international_law": ["law"],
"journalism": ["sociology"],
"jurisprudence": ["law"],
"legal_and_moral_basis": ["other"],
"logical": ["philosophy"],
"machine_learning": ["computer science"],
"management": ["business"],
"marketing": ["business"],
"marxist_theory": ["philosophy"],
"modern_chinese": ["linguistics", "china specific"],
"nutrition": ["other"],
"philosophy": ["philosophy"],
"professional_accounting": ["business"],
"professional_law": ["law"],
"professional_medicine": ["other"],
"professional_psychology": ["psychology"],
"public_relations": ["politics"],
"security_study": ["politics"],
"sociology": ["culture"],
"sports_science": ["other"],
"traditional_chinese_medicine": ["other", "china specific"],
"virology": ["biology"],
"world_history": ["history"],
"world_religions": ["global"],
}
categories = {
"STEM": [
"physics",
"chemistry",
"biology",
"computer science",
"math",
"engineering",
"statistics",
],
"Humanities": ["history", "philosophy", "law", "arts", "literature", "global"],
"Social Science": [
"linguistics",
"business",
"politics",
"culture",
"economics",
"geography",
"psychology",
"education",
"sociology",
],
"Other": ["other"],
"China specific": ["china specific"],
"Test": ["computer science"],
}
@classmethod
def suite(cls, chat=False):
finer_categories = (
pd.Series(cls.subcategories) # noqa # type: ignore
.explode()
.reset_index()
.set_index(0)
.groupby(0)
.agg(list)["index"]
.to_dict()
)
suite = defaultdict(list)
cls.categories["all"] = list(finer_categories.keys())
for k, v in cls.categories.items():
for subject in v:
suite[k].extend(
[
Task(
("haonan-li/cmmlu", subcategories),
metric_name=("sustech/tlem", "cmmlu"),
input_column=cls.input_column,
label_column=cls.label_column,
prompt=partial(cls.prompt_cmmlu, chat=chat),
few_shot=0 if chat else 5,
few_shot_from="dev",
)
for subcategories in finer_categories[subject]
]
)
return suite
class MMLU:
input_column = "prompt"
label_column = "target"
@classmethod
def prompt_mmlu(cls, example, chat=False):
prefix = (
"The following is a multiple-choice question. Please choose the most suitable one among A, B, C and D as the answer to this question.\n\n"
if chat
else "Question: "
)
prompt = prefix + example["input"]
for choice in list("ABCD"):
prompt += f"\n{choice}. {example[choice]}"
prompt += "\nAnswer:"
return {"prompt": prompt}
subcategories = {
"abstract_algebra": ["math"],
"anatomy": ["health"],
"astronomy": ["physics"],
"business_ethics": ["business"],
"clinical_knowledge": ["health"],
"college_biology": ["biology"],
"college_chemistry": ["chemistry"],
"college_computer_science": ["computer science"],
"college_mathematics": ["math"],
"college_medicine": ["health"],
"college_physics": ["physics"],
"computer_security": ["computer science"],
"conceptual_physics": ["physics"],
"econometrics": ["economics"],
"electrical_engineering": ["engineering"],
"elementary_mathematics": ["math"],
"formal_logic": ["philosophy"],
"global_facts": ["other"],
"high_school_biology": ["biology"],
"high_school_chemistry": ["chemistry"],
"high_school_computer_science": ["computer science"],
"high_school_european_history": ["history"],
"high_school_geography": ["geography"],
"high_school_government_and_politics": ["politics"],
"high_school_macroeconomics": ["economics"],
"high_school_mathematics": ["math"],
"high_school_microeconomics": ["economics"],
"high_school_physics": ["physics"],
"high_school_psychology": ["psychology"],
"high_school_statistics": ["math"],
"high_school_us_history": ["history"],
"high_school_world_history": ["history"],
"human_aging": ["health"],
"human_sexuality": ["culture"],
"international_law": ["law"],
"jurisprudence": ["law"],
"logical_fallacies": ["philosophy"],
"machine_learning": ["computer science"],
"management": ["business"],
"marketing": ["business"],
"medical_genetics": ["health"],
"miscellaneous": ["other"],
"moral_disputes": ["philosophy"],
"moral_scenarios": ["philosophy"],
"nutrition": ["health"],
"philosophy": ["philosophy"],
"prehistory": ["history"],
"professional_accounting": ["other"],
"professional_law": ["law"],
"professional_medicine": ["health"],
"professional_psychology": ["psychology"],
"public_relations": ["politics"],
"security_studies": ["politics"],
"sociology": ["culture"],
"us_foreign_policy": ["politics"],
"virology": ["health"],
"world_religions": ["philosophy"],
}
categories = {
"STEM": [
"physics",
"chemistry",
"biology",
"computer science",
"math",
"engineering",
],
"humanities": ["history", "philosophy", "law"],
"social sciences": [
"politics",
"culture",
"economics",
"geography",
"psychology",
],
"other": ["other", "business", "health"],
}
@classmethod
def suite(cls, chat=False):
finer_categories = (
pd.Series(cls.subcategories) # noqa # type: ignore
.explode()
.reset_index()
.set_index(0)
.groupby(0)
.agg(list)["index"]
.to_dict()
)
suite = defaultdict(list)
cls.categories["all"] = list(finer_categories.keys())
for k, v in cls.categories.items():
for subject in v:
suite[k].extend(
[
Task(
("lukaemon/mmlu", subcategories),
metric_name=("sustech/tlem", "mmlu"),
input_column=cls.input_column,
label_column=cls.label_column,
prompt=partial(cls.prompt_mmlu, chat=chat),
few_shot=0 if chat else 5,
few_shot_from="validation",
)
for subcategories in finer_categories[subject]
]
)
return suite
class Winogrande:
input_column = "input"
label_column = "answer"
categories = [
"winogrande_debiased",
"winogrande_l",
"winogrande_m",
"winogrande_s",
"winogrande_xl",
"winogrande_xs",
]
@classmethod
def prompt_winogrande(cls, example):
option1 = example["sentence"].replace("_", example["option1"])
option2 = example["sentence"].replace("_", example["option2"])
answer = example[cls.label_column]
prompt = f"Which of the following is a good sentence:\nA. {option1}\nB. {option2}\nAnswer:"
return {
cls.input_column: prompt,
cls.label_column: " AB"[int(answer)] if answer != "" else "",
}
@classmethod
def suite(
cls,
):
subcategories = {item: [item] for item in cls.categories}
finer_categories = (
pd.Series(subcategories) # noqa # type: ignore
.explode()
.reset_index()
.set_index(0)
.groupby(0)
.agg(list)["index"]
.to_dict()
)
suite = defaultdict(list)
subcategories["all"] = list(finer_categories.keys())
for cate, sub_cates in subcategories.items():
for sub_cate in sub_cates:
suite[cate].append(
Task(
("winogrande", sub_cate),
metric_name=("sustech/tlem", "winogrande"),
input_column=cls.input_column,
label_column=cls.label_column,
prompt=partial(cls.prompt_winogrande),
few_shot=0,
split="validation",
)
)
return suite
class DROP:
input_column = "input"
label_column = "answers"
icl_prompt = """\
Text: In the county, the population was spread out with 23.50% under the age of 18, 8.70% from 18 to 24, 29.70% from 25 to 44, 24.70% from 45 to 64, and 13.30% who were 65 years of age or older.
Question: How many more percent are under the age of 18 compared to the 18 to 24 group?
Anawer: According to the text, 23.5% are under the age of 18, and 8.7% are from ages 18 to 24. 23.5%-8.7%=14.8%. So the answer is 14.8.
Text: Playing in their second straight Thanksgiving game, the Eagles struggled especially on defense, where they were unable to stop the much-hyped Lions offense. The worst of it all was how unproven rookie Eric Rowe was tasked with covering wide receiver Calvin Johnson, leading to Johnson catching 3 touchdowns. Stafford’s five passing touchdowns, including three of them to Johnson was too much for the Eagles to overcome and for the second consecutive time this season, the Eagles gave up 45 points in a game. With the loss, the Eagles drop to 4-7 on the season and 6-1 when playing on Thanksgiving.
Question: How many TD passes did Stafford throw other than to Johnson?
Anawer: According to the text, Stafford threw 5 TD passes, 3 of which were to Johnson. 5-3=2. So the answer is 2.
Text: [PROMPT]
Question: [QUESTION]
Anawer:"""
@classmethod
def prompt_drop(cls, example):
prompt = cls.icl_prompt.replace("[PROMPT]", example["passage"]).replace(
"[QUESTION]", example["question"]
)
validated_answers = example["answers_spans"]["spans"]
answers = list(set(validated_answers))
return {cls.input_column: prompt, cls.label_column: answers}
@classmethod
def suite(
cls,
):
return Task(
"drop",
metric_name=("sustech/tlem", "drop"),
input_column=cls.input_column,
label_column=cls.label_column,
prompt=partial(cls.prompt_drop),
few_shot=0,
split="validation",
)
class HellaSwag:
input_column = "input"
label_column = "label"
categories = ["validation"]
@classmethod
def prompt_hellaswag(cls, example):
prompt = f"{example['ctx']}\nQuestion: Which ending makes the most sense?\n"
prompt += f"A. {example['endings'][0]}\n"
prompt += f"B. {example['endings'][1]}\n"
prompt += f"C. {example['endings'][2]}\n"
prompt += f"D. {example['endings'][3]}\n"
prompt += "You may choose from 'A', 'B', 'C', 'D'.\nAnswer:"
return {cls.input_column: prompt}
@classmethod
def suite(
cls,
):
finer_categories = (
pd.Series(cls.categories) # noqa # type: ignore
.explode()
.reset_index()
.set_index(0)
.groupby(0)
.agg(list)["index"]
.to_dict()
)
suite = defaultdict(list)
categories = list(finer_categories.keys())
for cate in categories:
suite[cate].append(
Task(
("Rowan/hellaswag", cate),
metric_name=("sustech/tlem", "hellaswag"),
input_column=cls.input_column,
label_column=cls.label_column,
prompt=partial(cls.prompt_hellaswag),
few_shot=0,
split="validation",
)
)
return suite
class ARC:
input_column = "input"
label_column = "answerKey"
categories = [
"ARC-Challenge",
"ARC-Easy",
]
@classmethod
def prompt_arc(cls, example):
choices = example["choices"]
prompt = f"Question: {example['question']}"
for label, choice in zip(choices["label"], choices["text"]):
prompt += f"\n{label}. {choice}"
prompt += "\nAnswer:"
return {cls.input_column: prompt}
@classmethod
def suite(cls):
finer_categories = (
pd.Series(cls.categories) # noqa # type: ignore
.explode()
.reset_index()
.set_index(0)
.groupby(0)
.agg(list)["index"]
.to_dict()
)
suite = defaultdict(list)
categories = list(finer_categories.keys())
for cate in categories:
suite[cate].append(
Task(
("ai2_arc", cate),
metric_name=("sustech/tlem", "arc"),
input_column=cls.input_column,
label_column=cls.label_column,
prompt=partial(cls.prompt_arc),
few_shot=0,
)
)
return suite
class BBH:
input_column = "input"
label_column = "target"
multiple_choice_prefix = "Follow the given examples and answer the question.\n[HINT]\n\nQ: [INPUT]\nA: Let's think step by step."
free_form_prefix = "Follow the given examples and answer the question.\n[HINT]\n\nQ: [INPUT]\nA: Let's think step by step."
bbh_multiple_choice_sets = [
"temporal_sequences",
"disambiguation_qa",
"date_understanding",
"tracking_shuffled_objects_three_objects",
"penguins_in_a_table",
"geometric_shapes",
"snarks",
"ruin_names",
"tracking_shuffled_objects_seven_objects",
"tracking_shuffled_objects_five_objects",
"logical_deduction_three_objects",
"hyperbaton",
"logical_deduction_five_objects",
"logical_deduction_seven_objects",
"movie_recommendation",
"salient_translation_error_detection",
"reasoning_about_colored_objects",
]
bbh_free_form_sets = [
"multistep_arithmetic_two",
"navigate",
"dyck_languages",
"word_sorting",
"sports_understanding",
"boolean_expressions",
"object_counting",
"formal_fallacies",
"causal_judgement",
"web_of_lies",
]
@classmethod
def prompt_bbh(cls, example, category: str):
meta_prompt = (
cls.multiple_choice_prefix
if category in cls.bbh_multiple_choice_sets
else cls.free_form_prefix
)
prompt = meta_prompt.replace(
"[HINT]", bbh_lib_prompt(category=category)
).replace("[INPUT]", example[cls.input_column])
return {"input": prompt}
@classmethod
def suite(
cls,
):
finer_categories = (
pd.Series(
cls.bbh_free_form_sets + cls.bbh_multiple_choice_sets
) # noqa # type: ignore
.explode()
.reset_index()
.set_index(0)
.groupby(0)
.agg(list)["index"]
.to_dict()
)
suite = defaultdict(list)
categories = list(finer_categories.keys())
for cate in categories:
if cate in cls.bbh_multiple_choice_sets:
suite[cate].append(
Task(
("lukaemon/bbh", cate),
metric_name=("sustech/tlem", "bbh_mcq"),
input_column=cls.input_column,
label_column=cls.label_column,
prompt=partial(cls.prompt_bbh, category=cate),
few_shot=0,
)
)
else:
suite[cate].append(
Task(
("lukaemon/bbh", cate),
metric_name=("sustech/tlem", "bbh_freefrom"),
input_column=cls.input_column,
label_column=cls.label_column,
prompt=partial(cls.prompt_bbh, category=cate),
few_shot=0,
)
)
return suite
class CEVAL:
input_column = "input"
label_column = "answer"
@classmethod
def prompt_ceval(cls, example, cate: str, chat=False):
_ch_name = cls.ceval_subject_mapping[cate][1]
prefix = f"以下是中国关于{_ch_name}考试的单项选择题,请选出其中的正确答案。\n" if chat else "问题:"
prompt = prefix + f'{example["question"]}'
for choice in list("ABCD"):
prompt += f"\n{choice}. {example[choice]}"
prompt += "\n答案:"
return {"input": prompt}
ceval_subject_mapping = {
"computer_network": [
"Computer Network",
"\u8ba1\u7b97\u673a\u7f51\u7edc",
"STEM",
],
"operating_system": ["Operating System", "\u64cd\u4f5c\u7cfb\u7edf", "STEM"],
"computer_architecture": [
"Computer Architecture",
"\u8ba1\u7b97\u673a\u7ec4\u6210",
"STEM",
],
"college_programming": [
"College Programming",
"\u5927\u5b66\u7f16\u7a0b",
"STEM",
],
"college_physics": ["College Physics", "\u5927\u5b66\u7269\u7406", "STEM"],
"college_chemistry": ["College Chemistry", "\u5927\u5b66\u5316\u5b66", "STEM"],
"advanced_mathematics": [
"Advanced Mathematics",
"\u9ad8\u7b49\u6570\u5b66",
"STEM",
],
"probability_and_statistics": [
"Probability and Statistics",
"\u6982\u7387\u7edf\u8ba1",
"STEM",
],
"discrete_mathematics": [
"Discrete Mathematics",
"\u79bb\u6563\u6570\u5b66",
"STEM",
],
"electrical_engineer": [
"Electrical Engineer",
"\u6ce8\u518c\u7535\u6c14\u5de5\u7a0b\u5e08",
"STEM",
],
"metrology_engineer": [
"Metrology Engineer",
"\u6ce8\u518c\u8ba1\u91cf\u5e08",
"STEM",
],
"high_school_mathematics": [
"High School Mathematics",
"\u9ad8\u4e2d\u6570\u5b66",
"STEM",
],
"high_school_physics": [
"High School Physics",
"\u9ad8\u4e2d\u7269\u7406",
"STEM",
],
"high_school_chemistry": [
"High School Chemistry",
"\u9ad8\u4e2d\u5316\u5b66",
"STEM",
],
"high_school_biology": [
"High School Biology",
"\u9ad8\u4e2d\u751f\u7269",
"STEM",
],
"middle_school_mathematics": [
"Middle School Mathematics",
"\u521d\u4e2d\u6570\u5b66",
"STEM",
],
"middle_school_biology": [
"Middle School Biology",
"\u521d\u4e2d\u751f\u7269",
"STEM",
],
"middle_school_physics": [
"Middle School Physics",
"\u521d\u4e2d\u7269\u7406",
"STEM",
],
"middle_school_chemistry": [
"Middle School Chemistry",
"\u521d\u4e2d\u5316\u5b66",
"STEM",
],
"veterinary_medicine": ["Veterinary Medicine", "\u517d\u533b\u5b66", "STEM"],
"college_economics": [
"College Economics",
"\u5927\u5b66\u7ecf\u6d4e\u5b66",
"Social Science",
],
"business_administration": [
"Business Administration",
"\u5de5\u5546\u7ba1\u7406",
"Social Science",
],
"marxism": [
"Marxism",
"\u9a6c\u514b\u601d\u4e3b\u4e49\u57fa\u672c\u539f\u7406",
"Social Science",
],
"mao_zedong_thought": [
"Mao Zedong Thought",
"\u6bdb\u6cfd\u4e1c\u601d\u60f3\u548c\u4e2d\u56fd\u7279\u8272\u793e\u4f1a\u4e3b\u4e49\u7406\u8bba\u4f53\u7cfb\u6982\u8bba",
"Social Science",
],
"education_science": [
"Education Science",
"\u6559\u80b2\u5b66",
"Social Science",
],
"teacher_qualification": [
"Teacher Qualification",
"\u6559\u5e08\u8d44\u683c",
"Social Science",
],
"high_school_politics": [
"High School Politics",
"\u9ad8\u4e2d\u653f\u6cbb",
"Social Science",
],
"high_school_geography": [
"High School Geography",
"\u9ad8\u4e2d\u5730\u7406",
"Social Science",
],
"middle_school_politics": [
"Middle School Politics",
"\u521d\u4e2d\u653f\u6cbb",
"Social Science",
],
"middle_school_geography": [
"Middle School Geography",
"\u521d\u4e2d\u5730\u7406",
"Social Science",
],
"modern_chinese_history": [
"Modern Chinese History",
"\u8fd1\u4ee3\u53f2\u7eb2\u8981",
"Humanities",
],
"ideological_and_moral_cultivation": [
"Ideological and Moral Cultivation",
"\u601d\u60f3\u9053\u5fb7\u4fee\u517b\u4e0e\u6cd5\u5f8b\u57fa\u7840",
"Humanities",
],
"logic": ["Logic", "\u903b\u8f91\u5b66", "Humanities"],
"law": ["Law", "\u6cd5\u5b66", "Humanities"],
"chinese_language_and_literature": [
"Chinese Language and Literature",
"\u4e2d\u56fd\u8bed\u8a00\u6587\u5b66",
"Humanities",
],
"art_studies": ["Art Studies", "\u827a\u672f\u5b66", "Humanities"],
"professional_tour_guide": [
"Professional Tour Guide",
"\u5bfc\u6e38\u8d44\u683c",
"Humanities",
],
"legal_professional": [
"Legal Professional",
"\u6cd5\u5f8b\u804c\u4e1a\u8d44\u683c",
"Humanities",
],
"high_school_chinese": [
"High School Chinese",
"\u9ad8\u4e2d\u8bed\u6587",
"Humanities",
],
"high_school_history": [
"High School History",
"\u9ad8\u4e2d\u5386\u53f2",
"Humanities",
],
"middle_school_history": [
"Middle School History",
"\u521d\u4e2d\u5386\u53f2",
"Humanities",
],
"civil_servant": ["Civil Servant", "\u516c\u52a1\u5458", "Other"],
"sports_science": ["Sports Science", "\u4f53\u80b2\u5b66", "Other"],
"plant_protection": ["Plant Protection", "\u690d\u7269\u4fdd\u62a4", "Other"],
"basic_medicine": ["Basic Medicine", "\u57fa\u7840\u533b\u5b66", "Other"],
"clinical_medicine": ["Clinical Medicine", "\u4e34\u5e8a\u533b\u5b66", "Other"],
"urban_and_rural_planner": [
"Urban and Rural Planner",
"\u6ce8\u518c\u57ce\u4e61\u89c4\u5212\u5e08",
"Other",
],
"accountant": ["Accountant", "\u6ce8\u518c\u4f1a\u8ba1\u5e08", "Other"],
"fire_engineer": [
"Fire Engineer",
"\u6ce8\u518c\u6d88\u9632\u5de5\u7a0b\u5e08",
"Other",
],
"environmental_impact_assessment_engineer": [
"Environmental Impact Assessment Engineer",
"\u73af\u5883\u5f71\u54cd\u8bc4\u4ef7\u5de5\u7a0b\u5e08",
"Other",
],
"tax_accountant": ["Tax Accountant", "\u7a0e\u52a1\u5e08", "Other"],
"physician": ["Physician", "\u533b\u5e08\u8d44\u683c", "Other"],
}
@classmethod
def suite(cls, chat: bool):
suite = defaultdict(list)
cls.categories = defaultdict(list)
for task, info in cls.ceval_subject_mapping.items():
cls.categories[info[0]].append(task)
cls.categories[info[2]].append(task)
cls.categories["all"] = list(cls.ceval_subject_mapping.keys())
for k, v in cls.categories.items():
for subject in v:
suite[k].append(
Task(
dataset_name=("ceval/ceval-exam", subject),
metric_name=("sustech/tlem", "ceval"),
input_column=cls.input_column,
label_column=cls.label_column,
prompt=partial(cls.prompt_ceval, cate=subject, chat=chat),
few_shot=0 if chat else 5,
few_shot_from="dev",
split="val",
)
)
return suite
|