Spaces:
Running
Running
from io import BytesIO | |
from PIL import Image | |
import gradio as gr | |
import re | |
import torch | |
from transformers import DonutProcessor, VisionEncoderDecoderModel | |
from transformers import AutoProcessor, PaliGemmaProcessor, PaliGemmaForConditionalGeneration | |
from transformers import AutoModelForVision2Seq | |
from huggingface_hub import InferenceClient | |
import base64 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_choices = [ | |
"idefics2", | |
"paligemma", | |
"donut" | |
] | |
def load_donut_model(): | |
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa") | |
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa") | |
model.to(device) | |
return model, processor | |
def load_paligemma_docvqa(): | |
# model_id = "google/paligemma-3b-ft-docvqa-896" | |
model_id = "google/paligemma-3b-mix-448" | |
processor = AutoProcessor.from_pretrained(model_id) | |
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id) | |
model.to(device) | |
return model, processor | |
def load_idefics_docvqa(): | |
model_id = "HuggingFaceM4/idefics2-8b" | |
processor = AutoProcessor.from_pretrained(model_id) | |
model = AutoModelForVision2Seq.from_pretrained(model_id) | |
model.to(device) | |
return model, processor | |
def load_models(): | |
# load donut | |
donut_model, donut_processor = load_donut_model() | |
print("donut downloaded") | |
# #load paligemma | |
pg_model, pg_processor = load_paligemma_docvqa() | |
print("paligemma downloaded") | |
return {"donut":[donut_model, donut_processor], | |
"paligemma": [pg_model, pg_processor] | |
} | |
loaded_models = load_models() | |
print("models loaded") | |
def base64_encoded_image(image_array): | |
im = Image.fromarray(image_array) | |
buffered = BytesIO() | |
im.save(buffered, format="PNG") | |
image_bytes = buffered.getvalue() | |
image_base64 = base64.b64encode(image_bytes).decode('ascii') | |
return image_base64 | |
def inference_calling_idefics(image_array, question): | |
model_id = "HuggingFaceM4/idefics2-8b" | |
client = InferenceClient(model=model_id) | |
image_base64 = base64_encoded_image(image_array) | |
image_info = f"data:image/png;base64,{image_base64}" | |
prompt = f"![]({image_info}){question}\n\n" | |
response = client.text_generation(prompt) | |
return response | |
def process_document_donut(image_array, question): | |
model, processor = loaded_models.get("donut") | |
# prepare encoder inputs | |
pixel_values = processor(image_array, return_tensors="pt").pixel_values | |
# prepare decoder inputs | |
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" | |
prompt = task_prompt.replace("{user_input}", question) | |
decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids | |
# generate answer | |
outputs = model.generate( | |
pixel_values.to(device), | |
decoder_input_ids=decoder_input_ids.to(device), | |
max_length=model.decoder.config.max_position_embeddings, | |
early_stopping=True, | |
pad_token_id=processor.tokenizer.pad_token_id, | |
eos_token_id=processor.tokenizer.eos_token_id, | |
use_cache=True, | |
num_beams=1, | |
bad_words_ids=[[processor.tokenizer.unk_token_id]], | |
return_dict_in_generate=True, | |
) | |
# postprocess | |
sequence = processor.batch_decode(outputs.sequences)[0] | |
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") | |
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token | |
op = processor.token2json(sequence) | |
op = op.get("answer", str(op)) | |
return op | |
def process_document_pg(image_array, question): | |
print("qustion :", question) | |
print("called loaded model") | |
model, processor = loaded_models.get("paligemma") | |
print("converting inputs") | |
inputs = processor(images=image_array, text=question, return_tensors="pt").to(device) | |
print("get predictions") | |
predictions = model.generate(**inputs, max_new_tokens=100) | |
print("returning decoding") | |
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n") | |
def process_document_idf(image_array, question): | |
model, processor = loaded_models.get("idefics") | |
inputs = processor(images=image_array, text=question, return_tensors="pt") #.to(device) | |
predictions = model.generate(**inputs, max_new_tokens=100) | |
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n") | |
def generate_answer_donut(image_array, question): | |
try: | |
print("processing document - donut") | |
answer = process_document_donut(image_array, question) | |
print(answer) | |
return answer | |
except Exception as e: | |
print(e) | |
gr.Warning("There is some issue, please try again later.") | |
return "sorry :(" | |
def generate_answer_idefics(image_array, question): | |
try: | |
print("processing document - idf2") | |
# answer = process_document_idf(image_array, question) | |
answer = inference_calling_idefics(image_array, question) | |
print(answer) | |
return answer | |
except Exception as e: | |
print(e) | |
gr.Warning("There is some issue, please try again later.") | |
return "sorry :(" | |
def generate_answer_paligemma(image_array, question): | |
try: | |
print("processing document - pg") | |
answer = process_document_pg(image_array, question) | |
print(answer) | |
return answer | |
except Exception as e: | |
print(e) | |
gr.Warning("There is some issue, please try again later.") | |
return "sorry :(" | |
def generate_answers(image_path, question, selected_model=model_choices[0]): | |
print("selected model: ", selected_model) | |
try: | |
if selected_model == "donut": | |
print("generate answers donut") | |
answer = generate_answer_donut(image_path, question) | |
elif selected_model == "paligemma": | |
print("generate answers pg") | |
answer = generate_answer_paligemma(image_path, question) | |
else: | |
print("generate answers idf2") | |
answer = generate_answer_idefics(image_path, question) | |
return [answer] #[donut_answer, pg_answer, idf_answer] | |
except Exception as e: | |
print(e) | |
gr.Warning("There is some issue, please try again later.") | |
return ["sorry :("] | |
def greet(name, shame, game): | |
return "Hello " + shame + "!!" | |
INTRO_TEXT = """## VQA demo\n\n | |
VQA task models comparison | |
This space is to compare multiple models on visual document question answering. \n\n | |
""" | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(INTRO_TEXT) | |
# with gr.Tab("Text Generation"): | |
with gr.Column(): | |
image = gr.Image(label="Input Image") | |
question = gr.Text(label="Question") | |
selected_model = gr.Radio(model_choices, label="Model", info="Select the model you want to run") | |
outputs_answer = gr.Text(label="Answer generated by the selected model") | |
run_button = gr.Button() | |
inputs = [ | |
image, | |
question, | |
selected_model | |
] | |
outputs = [ | |
outputs_answer | |
] | |
run_button.click( | |
fn=generate_answers, | |
inputs=inputs, | |
outputs=outputs, | |
) | |
examples = [["images/sample_vendor_contract.png", "Agreement is between whom?"], | |
["images/apple-10k-form.png", "What were the EMEA revenues in 2017?"], | |
["images/infographic.png", "What is workforce in UPS?"], | |
["images/omr1.png", "What was the food quality of hospitality tent?"], | |
["images/omr2.png", "What is efficiency rating?"], | |
["images/omr3.png", "What is the selected reason code?"], | |
["images/omr4.png", "What is the product classification?"], | |
["images/cupon code 2.png", "The coupon code is adressed to whom?"], | |
["images/cupon code 2.png", "What is coupon expiration date?"], | |
["images/cupon code 2.png", "What is assigned code?"], | |
["images/completion form.png", "What is date posting completed?"], | |
["images/sender_receiver.png", "What is the fax phone number of the sender?"], | |
["images/marketing research.png", "What is the current available balance?"], | |
["images/toxicity.png", "What is the reported date?"], | |
["images/handwriting.png", "What is the contribution amount per pay period?"], | |
] | |
gr.Examples( | |
examples=examples, | |
inputs=inputs, | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=10).launch(debug=True) |