vQA-exploration / app.py
Saee's picture
Update app.py
2199156 verified
from io import BytesIO
from PIL import Image
import gradio as gr
import re
import torch
from transformers import DonutProcessor, VisionEncoderDecoderModel
from transformers import AutoProcessor, PaliGemmaProcessor, PaliGemmaForConditionalGeneration
from transformers import AutoModelForVision2Seq
from huggingface_hub import InferenceClient
import base64
device = "cuda" if torch.cuda.is_available() else "cpu"
model_choices = [
"idefics2",
"paligemma",
"donut"
]
def load_donut_model():
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
model.to(device)
return model, processor
def load_paligemma_docvqa():
# model_id = "google/paligemma-3b-ft-docvqa-896"
model_id = "google/paligemma-3b-mix-448"
processor = AutoProcessor.from_pretrained(model_id)
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
model.to(device)
return model, processor
def load_idefics_docvqa():
model_id = "HuggingFaceM4/idefics2-8b"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForVision2Seq.from_pretrained(model_id)
model.to(device)
return model, processor
def load_models():
# load donut
donut_model, donut_processor = load_donut_model()
print("donut downloaded")
# #load paligemma
pg_model, pg_processor = load_paligemma_docvqa()
print("paligemma downloaded")
return {"donut":[donut_model, donut_processor],
"paligemma": [pg_model, pg_processor]
}
loaded_models = load_models()
print("models loaded")
def base64_encoded_image(image_array):
im = Image.fromarray(image_array)
buffered = BytesIO()
im.save(buffered, format="PNG")
image_bytes = buffered.getvalue()
image_base64 = base64.b64encode(image_bytes).decode('ascii')
return image_base64
def inference_calling_idefics(image_array, question):
model_id = "HuggingFaceM4/idefics2-8b"
client = InferenceClient(model=model_id)
image_base64 = base64_encoded_image(image_array)
image_info = f"data:image/png;base64,{image_base64}"
prompt = f"![]({image_info}){question}\n\n"
response = client.text_generation(prompt)
return response
def process_document_donut(image_array, question):
model, processor = loaded_models.get("donut")
# prepare encoder inputs
pixel_values = processor(image_array, return_tensors="pt").pixel_values
# prepare decoder inputs
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
prompt = task_prompt.replace("{user_input}", question)
decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
# generate answer
outputs = model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
# postprocess
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
op = processor.token2json(sequence)
op = op.get("answer", str(op))
return op
def process_document_pg(image_array, question):
print("qustion :", question)
print("called loaded model")
model, processor = loaded_models.get("paligemma")
print("converting inputs")
inputs = processor(images=image_array, text=question, return_tensors="pt").to(device)
print("get predictions")
predictions = model.generate(**inputs, max_new_tokens=100)
print("returning decoding")
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
def process_document_idf(image_array, question):
model, processor = loaded_models.get("idefics")
inputs = processor(images=image_array, text=question, return_tensors="pt") #.to(device)
predictions = model.generate(**inputs, max_new_tokens=100)
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
def generate_answer_donut(image_array, question):
try:
print("processing document - donut")
answer = process_document_donut(image_array, question)
print(answer)
return answer
except Exception as e:
print(e)
gr.Warning("There is some issue, please try again later.")
return "sorry :("
def generate_answer_idefics(image_array, question):
try:
print("processing document - idf2")
# answer = process_document_idf(image_array, question)
answer = inference_calling_idefics(image_array, question)
print(answer)
return answer
except Exception as e:
print(e)
gr.Warning("There is some issue, please try again later.")
return "sorry :("
def generate_answer_paligemma(image_array, question):
try:
print("processing document - pg")
answer = process_document_pg(image_array, question)
print(answer)
return answer
except Exception as e:
print(e)
gr.Warning("There is some issue, please try again later.")
return "sorry :("
def generate_answers(image_path, question, selected_model=model_choices[0]):
print("selected model: ", selected_model)
try:
if selected_model == "donut":
print("generate answers donut")
answer = generate_answer_donut(image_path, question)
elif selected_model == "paligemma":
print("generate answers pg")
answer = generate_answer_paligemma(image_path, question)
else:
print("generate answers idf2")
answer = generate_answer_idefics(image_path, question)
return [answer] #[donut_answer, pg_answer, idf_answer]
except Exception as e:
print(e)
gr.Warning("There is some issue, please try again later.")
return ["sorry :("]
def greet(name, shame, game):
return "Hello " + shame + "!!"
INTRO_TEXT = """## VQA demo\n\n
VQA task models comparison
This space is to compare multiple models on visual document question answering. \n\n
"""
with gr.Blocks(css="style.css") as demo:
gr.Markdown(INTRO_TEXT)
# with gr.Tab("Text Generation"):
with gr.Column():
image = gr.Image(label="Input Image")
question = gr.Text(label="Question")
selected_model = gr.Radio(model_choices, label="Model", info="Select the model you want to run")
outputs_answer = gr.Text(label="Answer generated by the selected model")
run_button = gr.Button()
inputs = [
image,
question,
selected_model
]
outputs = [
outputs_answer
]
run_button.click(
fn=generate_answers,
inputs=inputs,
outputs=outputs,
)
examples = [["images/sample_vendor_contract.png", "Agreement is between whom?"],
["images/apple-10k-form.png", "What were the EMEA revenues in 2017?"],
["images/infographic.png", "What is workforce in UPS?"],
["images/omr1.png", "What was the food quality of hospitality tent?"],
["images/omr2.png", "What is efficiency rating?"],
["images/omr3.png", "What is the selected reason code?"],
["images/omr4.png", "What is the product classification?"],
["images/cupon code 2.png", "The coupon code is adressed to whom?"],
["images/cupon code 2.png", "What is coupon expiration date?"],
["images/cupon code 2.png", "What is assigned code?"],
["images/completion form.png", "What is date posting completed?"],
["images/sender_receiver.png", "What is the fax phone number of the sender?"],
["images/marketing research.png", "What is the current available balance?"],
["images/toxicity.png", "What is the reported date?"],
["images/handwriting.png", "What is the contribution amount per pay period?"],
]
gr.Examples(
examples=examples,
inputs=inputs,
)
if __name__ == "__main__":
demo.queue(max_size=10).launch(debug=True)