Spaces:
Runtime error
Runtime error
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license | |
""" | |
Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit | |
Format | `export.py --include` | Model | |
--- | --- | --- | |
PyTorch | - | yolov5s.pt | |
TorchScript | `torchscript` | yolov5s.torchscript | |
ONNX | `onnx` | yolov5s.onnx | |
OpenVINO | `openvino` | yolov5s_openvino_model/ | |
TensorRT | `engine` | yolov5s.engine | |
CoreML | `coreml` | yolov5s.mlmodel | |
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/ | |
TensorFlow GraphDef | `pb` | yolov5s.pb | |
TensorFlow Lite | `tflite` | yolov5s.tflite | |
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite | |
TensorFlow.js | `tfjs` | yolov5s_web_model/ | |
PaddlePaddle | `paddle` | yolov5s_paddle_model/ | |
Requirements: | |
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU | |
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU | |
Usage: | |
$ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ... | |
Inference: | |
$ python detect.py --weights yolov5s.pt # PyTorch | |
yolov5s.torchscript # TorchScript | |
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn | |
yolov5s_openvino_model # OpenVINO | |
yolov5s.engine # TensorRT | |
yolov5s.mlmodel # CoreML (macOS-only) | |
yolov5s_saved_model # TensorFlow SavedModel | |
yolov5s.pb # TensorFlow GraphDef | |
yolov5s.tflite # TensorFlow Lite | |
yolov5s_edgetpu.tflite # TensorFlow Edge TPU | |
yolov5s_paddle_model # PaddlePaddle | |
TensorFlow.js: | |
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example | |
$ npm install | |
$ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model | |
$ npm start | |
""" | |
import argparse | |
import contextlib | |
import json | |
import os | |
import platform | |
import re | |
import subprocess | |
import sys | |
import time | |
import warnings | |
from pathlib import Path | |
import pandas as pd | |
import torch | |
from torch.utils.mobile_optimizer import optimize_for_mobile | |
FILE = Path(__file__).resolve() | |
ROOT = FILE.parents[0] # YOLOv5 root directory | |
if str(ROOT) not in sys.path: | |
sys.path.append(str(ROOT)) # add ROOT to PATH | |
if platform.system() != "Windows": | |
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative | |
from models.experimental import attempt_load | |
from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel | |
from utils.dataloaders import LoadImages | |
from utils.general import ( | |
LOGGER, | |
Profile, | |
check_dataset, | |
check_img_size, | |
check_requirements, | |
check_version, | |
check_yaml, | |
colorstr, | |
file_size, | |
get_default_args, | |
print_args, | |
url2file, | |
yaml_save, | |
) | |
from utils.torch_utils import select_device, smart_inference_mode | |
MACOS = platform.system() == "Darwin" # macOS environment | |
def export_formats(): | |
# YOLOv5 export formats | |
x = [ | |
["PyTorch", "-", ".pt", True, True], | |
["TorchScript", "torchscript", ".torchscript", True, True], | |
["ONNX", "onnx", ".onnx", True, True], | |
["OpenVINO", "openvino", "_openvino_model", True, False], | |
["TensorRT", "engine", ".engine", False, True], | |
["CoreML", "coreml", ".mlmodel", True, False], | |
["TensorFlow SavedModel", "saved_model", "_saved_model", True, True], | |
["TensorFlow GraphDef", "pb", ".pb", True, True], | |
["TensorFlow Lite", "tflite", ".tflite", True, False], | |
["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", False, False], | |
["TensorFlow.js", "tfjs", "_web_model", False, False], | |
["PaddlePaddle", "paddle", "_paddle_model", True, True], | |
] | |
return pd.DataFrame( | |
x, columns=["Format", "Argument", "Suffix", "CPU", "GPU"] | |
) | |
def try_export(inner_func): | |
# YOLOv5 export decorator, i..e @try_export | |
inner_args = get_default_args(inner_func) | |
def outer_func(*args, **kwargs): | |
prefix = inner_args["prefix"] | |
try: | |
with Profile() as dt: | |
f, model = inner_func(*args, **kwargs) | |
LOGGER.info( | |
f"{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)" | |
) | |
return f, model | |
except Exception as e: | |
LOGGER.info(f"{prefix} export failure ❌ {dt.t:.1f}s: {e}") | |
return None, None | |
return outer_func | |
def export_torchscript( | |
model, im, file, optimize, prefix=colorstr("TorchScript:") | |
): | |
# YOLOv5 TorchScript model export | |
LOGGER.info( | |
f"\n{prefix} starting export with torch {torch.__version__}..." | |
) | |
f = file.with_suffix(".torchscript") | |
ts = torch.jit.trace(model, im, strict=False) | |
d = { | |
"shape": im.shape, | |
"stride": int(max(model.stride)), | |
"names": model.names, | |
} | |
extra_files = {"config.txt": json.dumps(d)} # torch._C.ExtraFilesMap() | |
if ( | |
optimize | |
): # https://pytorch.org/tutorials/recipes/mobile_interpreter.html | |
optimize_for_mobile(ts)._save_for_lite_interpreter( | |
str(f), _extra_files=extra_files | |
) | |
else: | |
ts.save(str(f), _extra_files=extra_files) | |
return f, None | |
def export_onnx( | |
model, im, file, opset, dynamic, simplify, prefix=colorstr("ONNX:") | |
): | |
# YOLOv5 ONNX export | |
check_requirements("onnx>=1.12.0") | |
import onnx | |
LOGGER.info(f"\n{prefix} starting export with onnx {onnx.__version__}...") | |
f = file.with_suffix(".onnx") | |
output_names = ( | |
["output0", "output1"] | |
if isinstance(model, SegmentationModel) | |
else ["output0"] | |
) | |
if dynamic: | |
dynamic = { | |
"images": {0: "batch", 2: "height", 3: "width"} | |
} # shape(1,3,640,640) | |
if isinstance(model, SegmentationModel): | |
dynamic["output0"] = { | |
0: "batch", | |
1: "anchors", | |
} # shape(1,25200,85) | |
dynamic["output1"] = { | |
0: "batch", | |
2: "mask_height", | |
3: "mask_width", | |
} # shape(1,32,160,160) | |
elif isinstance(model, DetectionModel): | |
dynamic["output0"] = { | |
0: "batch", | |
1: "anchors", | |
} # shape(1,25200,85) | |
torch.onnx.export( | |
model.cpu() | |
if dynamic | |
else model, # --dynamic only compatible with cpu | |
im.cpu() if dynamic else im, | |
f, | |
verbose=False, | |
opset_version=opset, | |
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False | |
input_names=["images"], | |
output_names=output_names, | |
dynamic_axes=dynamic or None, | |
) | |
# Checks | |
model_onnx = onnx.load(f) # load onnx model | |
onnx.checker.check_model(model_onnx) # check onnx model | |
# Metadata | |
d = {"stride": int(max(model.stride)), "names": model.names} | |
for k, v in d.items(): | |
meta = model_onnx.metadata_props.add() | |
meta.key, meta.value = k, str(v) | |
onnx.save(model_onnx, f) | |
# Simplify | |
if simplify: | |
try: | |
cuda = torch.cuda.is_available() | |
check_requirements( | |
( | |
"onnxruntime-gpu" if cuda else "onnxruntime", | |
"onnx-simplifier>=0.4.1", | |
) | |
) | |
import onnxsim | |
LOGGER.info( | |
f"{prefix} simplifying with onnx-simplifier {onnxsim.__version__}..." | |
) | |
model_onnx, check = onnxsim.simplify(model_onnx) | |
assert check, "assert check failed" | |
onnx.save(model_onnx, f) | |
except Exception as e: | |
LOGGER.info(f"{prefix} simplifier failure: {e}") | |
return f, model_onnx | |
def export_openvino(file, metadata, half, prefix=colorstr("OpenVINO:")): | |
# YOLOv5 OpenVINO export | |
check_requirements( | |
"openvino-dev" | |
) # requires openvino-dev: https://pypi.org/project/openvino-dev/ | |
import openvino.inference_engine as ie | |
LOGGER.info( | |
f"\n{prefix} starting export with openvino {ie.__version__}..." | |
) | |
f = str(file).replace(".pt", f"_openvino_model{os.sep}") | |
cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}" | |
subprocess.run(cmd.split(), check=True, env=os.environ) # export | |
yaml_save( | |
Path(f) / file.with_suffix(".yaml").name, metadata | |
) # add metadata.yaml | |
return f, None | |
def export_paddle(model, im, file, metadata, prefix=colorstr("PaddlePaddle:")): | |
# YOLOv5 Paddle export | |
check_requirements(("paddlepaddle", "x2paddle")) | |
import x2paddle | |
from x2paddle.convert import pytorch2paddle | |
LOGGER.info( | |
f"\n{prefix} starting export with X2Paddle {x2paddle.__version__}..." | |
) | |
f = str(file).replace(".pt", f"_paddle_model{os.sep}") | |
pytorch2paddle( | |
module=model, save_dir=f, jit_type="trace", input_examples=[im] | |
) # export | |
yaml_save( | |
Path(f) / file.with_suffix(".yaml").name, metadata | |
) # add metadata.yaml | |
return f, None | |
def export_coreml(model, im, file, int8, half, prefix=colorstr("CoreML:")): | |
# YOLOv5 CoreML export | |
check_requirements("coremltools") | |
import coremltools as ct | |
LOGGER.info( | |
f"\n{prefix} starting export with coremltools {ct.__version__}..." | |
) | |
f = file.with_suffix(".mlmodel") | |
ts = torch.jit.trace(model, im, strict=False) # TorchScript model | |
ct_model = ct.convert( | |
ts, | |
inputs=[ | |
ct.ImageType( | |
"image", shape=im.shape, scale=1 / 255, bias=[0, 0, 0] | |
) | |
], | |
) | |
bits, mode = ( | |
(8, "kmeans_lut") if int8 else (16, "linear") if half else (32, None) | |
) | |
if bits < 32: | |
if MACOS: # quantization only supported on macOS | |
with warnings.catch_warnings(): | |
warnings.filterwarnings( | |
"ignore", category=DeprecationWarning | |
) # suppress numpy==1.20 float warning | |
ct_model = ct.models.neural_network.quantization_utils.quantize_weights( | |
ct_model, bits, mode | |
) | |
else: | |
print( | |
f"{prefix} quantization only supported on macOS, skipping..." | |
) | |
ct_model.save(f) | |
return f, ct_model | |
def export_engine( | |
model, | |
im, | |
file, | |
half, | |
dynamic, | |
simplify, | |
workspace=4, | |
verbose=False, | |
prefix=colorstr("TensorRT:"), | |
): | |
# YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt | |
assert ( | |
im.device.type != "cpu" | |
), "export running on CPU but must be on GPU, i.e. `python export.py --device 0`" | |
try: | |
import tensorrt as trt | |
except Exception: | |
if platform.system() == "Linux": | |
check_requirements( | |
"nvidia-tensorrt", | |
cmds="-U --index-url https://pypi.ngc.nvidia.com", | |
) | |
import tensorrt as trt | |
if ( | |
trt.__version__[0] == "7" | |
): # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012 | |
grid = model.model[-1].anchor_grid | |
model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid] | |
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12 | |
model.model[-1].anchor_grid = grid | |
else: # TensorRT >= 8 | |
check_version( | |
trt.__version__, "8.0.0", hard=True | |
) # require tensorrt>=8.0.0 | |
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12 | |
onnx = file.with_suffix(".onnx") | |
LOGGER.info( | |
f"\n{prefix} starting export with TensorRT {trt.__version__}..." | |
) | |
assert onnx.exists(), f"failed to export ONNX file: {onnx}" | |
f = file.with_suffix(".engine") # TensorRT engine file | |
logger = trt.Logger(trt.Logger.INFO) | |
if verbose: | |
logger.min_severity = trt.Logger.Severity.VERBOSE | |
builder = trt.Builder(logger) | |
config = builder.create_builder_config() | |
config.max_workspace_size = workspace * 1 << 30 | |
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice | |
flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) | |
network = builder.create_network(flag) | |
parser = trt.OnnxParser(network, logger) | |
if not parser.parse_from_file(str(onnx)): | |
raise RuntimeError(f"failed to load ONNX file: {onnx}") | |
inputs = [network.get_input(i) for i in range(network.num_inputs)] | |
outputs = [network.get_output(i) for i in range(network.num_outputs)] | |
for inp in inputs: | |
LOGGER.info( | |
f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}' | |
) | |
for out in outputs: | |
LOGGER.info( | |
f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}' | |
) | |
if dynamic: | |
if im.shape[0] <= 1: | |
LOGGER.warning( | |
f"{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument" | |
) | |
profile = builder.create_optimization_profile() | |
for inp in inputs: | |
profile.set_shape( | |
inp.name, | |
(1, *im.shape[1:]), | |
(max(1, im.shape[0] // 2), *im.shape[1:]), | |
im.shape, | |
) | |
config.add_optimization_profile(profile) | |
LOGGER.info( | |
f"{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}" | |
) | |
if builder.platform_has_fast_fp16 and half: | |
config.set_flag(trt.BuilderFlag.FP16) | |
with builder.build_engine(network, config) as engine, open(f, "wb") as t: | |
t.write(engine.serialize()) | |
return f, None | |
def export_saved_model( | |
model, | |
im, | |
file, | |
dynamic, | |
tf_nms=False, | |
agnostic_nms=False, | |
topk_per_class=100, | |
topk_all=100, | |
iou_thres=0.45, | |
conf_thres=0.25, | |
keras=False, | |
prefix=colorstr("TensorFlow SavedModel:"), | |
): | |
# YOLOv5 TensorFlow SavedModel export | |
try: | |
import tensorflow as tf | |
except Exception: | |
check_requirements( | |
f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}" | |
) | |
import tensorflow as tf | |
from tensorflow.python.framework.convert_to_constants import ( | |
convert_variables_to_constants_v2, | |
) | |
from models.tf import TFModel | |
LOGGER.info( | |
f"\n{prefix} starting export with tensorflow {tf.__version__}..." | |
) | |
f = str(file).replace(".pt", "_saved_model") | |
batch_size, ch, *imgsz = list(im.shape) # BCHW | |
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz) | |
im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow | |
_ = tf_model.predict( | |
im, | |
tf_nms, | |
agnostic_nms, | |
topk_per_class, | |
topk_all, | |
iou_thres, | |
conf_thres, | |
) | |
inputs = tf.keras.Input( | |
shape=(*imgsz, ch), batch_size=None if dynamic else batch_size | |
) | |
outputs = tf_model.predict( | |
inputs, | |
tf_nms, | |
agnostic_nms, | |
topk_per_class, | |
topk_all, | |
iou_thres, | |
conf_thres, | |
) | |
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs) | |
keras_model.trainable = False | |
keras_model.summary() | |
if keras: | |
keras_model.save(f, save_format="tf") | |
else: | |
spec = tf.TensorSpec( | |
keras_model.inputs[0].shape, keras_model.inputs[0].dtype | |
) | |
m = tf.function(lambda x: keras_model(x)) # full model | |
m = m.get_concrete_function(spec) | |
frozen_func = convert_variables_to_constants_v2(m) | |
tfm = tf.Module() | |
tfm.__call__ = tf.function( | |
lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec] | |
) | |
tfm.__call__(im) | |
tf.saved_model.save( | |
tfm, | |
f, | |
options=tf.saved_model.SaveOptions( | |
experimental_custom_gradients=False | |
) | |
if check_version(tf.__version__, "2.6") | |
else tf.saved_model.SaveOptions(), | |
) | |
return f, keras_model | |
def export_pb(keras_model, file, prefix=colorstr("TensorFlow GraphDef:")): | |
# YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow | |
import tensorflow as tf | |
from tensorflow.python.framework.convert_to_constants import ( | |
convert_variables_to_constants_v2, | |
) | |
LOGGER.info( | |
f"\n{prefix} starting export with tensorflow {tf.__version__}..." | |
) | |
f = file.with_suffix(".pb") | |
m = tf.function(lambda x: keras_model(x)) # full model | |
m = m.get_concrete_function( | |
tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype) | |
) | |
frozen_func = convert_variables_to_constants_v2(m) | |
frozen_func.graph.as_graph_def() | |
tf.io.write_graph( | |
graph_or_graph_def=frozen_func.graph, | |
logdir=str(f.parent), | |
name=f.name, | |
as_text=False, | |
) | |
return f, None | |
def export_tflite( | |
keras_model, | |
im, | |
file, | |
int8, | |
data, | |
nms, | |
agnostic_nms, | |
prefix=colorstr("TensorFlow Lite:"), | |
): | |
# YOLOv5 TensorFlow Lite export | |
import tensorflow as tf | |
LOGGER.info( | |
f"\n{prefix} starting export with tensorflow {tf.__version__}..." | |
) | |
batch_size, ch, *imgsz = list(im.shape) # BCHW | |
f = str(file).replace(".pt", "-fp16.tflite") | |
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model) | |
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS] | |
converter.target_spec.supported_types = [tf.float16] | |
converter.optimizations = [tf.lite.Optimize.DEFAULT] | |
if int8: | |
from models.tf import representative_dataset_gen | |
dataset = LoadImages( | |
check_dataset(check_yaml(data))["train"], | |
img_size=imgsz, | |
auto=False, | |
) | |
converter.representative_dataset = lambda: representative_dataset_gen( | |
dataset, ncalib=100 | |
) | |
converter.target_spec.supported_ops = [ | |
tf.lite.OpsSet.TFLITE_BUILTINS_INT8 | |
] | |
converter.target_spec.supported_types = [] | |
converter.inference_input_type = tf.uint8 # or tf.int8 | |
converter.inference_output_type = tf.uint8 # or tf.int8 | |
converter.experimental_new_quantizer = True | |
f = str(file).replace(".pt", "-int8.tflite") | |
if nms or agnostic_nms: | |
converter.target_spec.supported_ops.append( | |
tf.lite.OpsSet.SELECT_TF_OPS | |
) | |
tflite_model = converter.convert() | |
open(f, "wb").write(tflite_model) | |
return f, None | |
def export_edgetpu(file, prefix=colorstr("Edge TPU:")): | |
# YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/ | |
cmd = "edgetpu_compiler --version" | |
help_url = "https://coral.ai/docs/edgetpu/compiler/" | |
assert ( | |
platform.system() == "Linux" | |
), f"export only supported on Linux. See {help_url}" | |
if subprocess.run(f"{cmd} >/dev/null", shell=True).returncode != 0: | |
LOGGER.info( | |
f"\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}" | |
) | |
sudo = ( | |
subprocess.run("sudo --version >/dev/null", shell=True).returncode | |
== 0 | |
) # sudo installed on system | |
for c in ( | |
"curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -", | |
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list', | |
"sudo apt-get update", | |
"sudo apt-get install edgetpu-compiler", | |
): | |
subprocess.run( | |
c if sudo else c.replace("sudo ", ""), shell=True, check=True | |
) | |
ver = ( | |
subprocess.run(cmd, shell=True, capture_output=True, check=True) | |
.stdout.decode() | |
.split()[-1] | |
) | |
LOGGER.info(f"\n{prefix} starting export with Edge TPU compiler {ver}...") | |
f = str(file).replace(".pt", "-int8_edgetpu.tflite") # Edge TPU model | |
f_tfl = str(file).replace(".pt", "-int8.tflite") # TFLite model | |
cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {file.parent} {f_tfl}" | |
subprocess.run(cmd.split(), check=True) | |
return f, None | |
def export_tfjs(file, prefix=colorstr("TensorFlow.js:")): | |
# YOLOv5 TensorFlow.js export | |
check_requirements("tensorflowjs") | |
import tensorflowjs as tfjs | |
LOGGER.info( | |
f"\n{prefix} starting export with tensorflowjs {tfjs.__version__}..." | |
) | |
f = str(file).replace(".pt", "_web_model") # js dir | |
f_pb = file.with_suffix(".pb") # *.pb path | |
f_json = f"{f}/model.json" # *.json path | |
cmd = ( | |
f"tensorflowjs_converter --input_format=tf_frozen_model " | |
f"--output_node_names=Identity,Identity_1,Identity_2,Identity_3 {f_pb} {f}" | |
) | |
subprocess.run(cmd.split()) | |
json = Path(f_json).read_text() | |
with open(f_json, "w") as j: # sort JSON Identity_* in ascending order | |
subst = re.sub( | |
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, ' | |
r'"Identity.?.?": {"name": "Identity.?.?"}, ' | |
r'"Identity.?.?": {"name": "Identity.?.?"}, ' | |
r'"Identity.?.?": {"name": "Identity.?.?"}}}', | |
r'{"outputs": {"Identity": {"name": "Identity"}, ' | |
r'"Identity_1": {"name": "Identity_1"}, ' | |
r'"Identity_2": {"name": "Identity_2"}, ' | |
r'"Identity_3": {"name": "Identity_3"}}}', | |
json, | |
) | |
j.write(subst) | |
return f, None | |
def add_tflite_metadata(file, metadata, num_outputs): | |
# Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata | |
with contextlib.suppress(ImportError): | |
# check_requirements('tflite_support') | |
from tflite_support import flatbuffers | |
from tflite_support import metadata as _metadata | |
from tflite_support import metadata_schema_py_generated as _metadata_fb | |
tmp_file = Path("/tmp/meta.txt") | |
with open(tmp_file, "w") as meta_f: | |
meta_f.write(str(metadata)) | |
model_meta = _metadata_fb.ModelMetadataT() | |
label_file = _metadata_fb.AssociatedFileT() | |
label_file.name = tmp_file.name | |
model_meta.associatedFiles = [label_file] | |
subgraph = _metadata_fb.SubGraphMetadataT() | |
subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()] | |
subgraph.outputTensorMetadata = [ | |
_metadata_fb.TensorMetadataT() | |
] * num_outputs | |
model_meta.subgraphMetadata = [subgraph] | |
b = flatbuffers.Builder(0) | |
b.Finish( | |
model_meta.Pack(b), | |
_metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER, | |
) | |
metadata_buf = b.Output() | |
populator = _metadata.MetadataPopulator.with_model_file(file) | |
populator.load_metadata_buffer(metadata_buf) | |
populator.load_associated_files([str(tmp_file)]) | |
populator.populate() | |
tmp_file.unlink() | |
def run( | |
data=ROOT / "data/coco128.yaml", # 'dataset.yaml path' | |
weights=ROOT / "yolov5s.pt", # weights path | |
imgsz=(640, 640), # image (height, width) | |
batch_size=1, # batch size | |
device="cpu", # cuda device, i.e. 0 or 0,1,2,3 or cpu | |
include=("torchscript", "onnx"), # include formats | |
half=False, # FP16 half-precision export | |
inplace=False, # set YOLOv5 Detect() inplace=True | |
keras=False, # use Keras | |
optimize=False, # TorchScript: optimize for mobile | |
int8=False, # CoreML/TF INT8 quantization | |
dynamic=False, # ONNX/TF/TensorRT: dynamic axes | |
simplify=False, # ONNX: simplify model | |
opset=12, # ONNX: opset version | |
verbose=False, # TensorRT: verbose log | |
workspace=4, # TensorRT: workspace size (GB) | |
nms=False, # TF: add NMS to model | |
agnostic_nms=False, # TF: add agnostic NMS to model | |
topk_per_class=100, # TF.js NMS: topk per class to keep | |
topk_all=100, # TF.js NMS: topk for all classes to keep | |
iou_thres=0.45, # TF.js NMS: IoU threshold | |
conf_thres=0.25, # TF.js NMS: confidence threshold | |
): | |
t = time.time() | |
include = [x.lower() for x in include] # to lowercase | |
fmts = tuple(export_formats()["Argument"][1:]) # --include arguments | |
flags = [x in include for x in fmts] | |
assert sum(flags) == len( | |
include | |
), f"ERROR: Invalid --include {include}, valid --include arguments are {fmts}" | |
( | |
jit, | |
onnx, | |
xml, | |
engine, | |
coreml, | |
saved_model, | |
pb, | |
tflite, | |
edgetpu, | |
tfjs, | |
paddle, | |
) = flags # export booleans | |
file = Path( | |
url2file(weights) | |
if str(weights).startswith(("http:/", "https:/")) | |
else weights | |
) # PyTorch weights | |
# Load PyTorch model | |
device = select_device(device) | |
if half: | |
assert ( | |
device.type != "cpu" or coreml | |
), "--half only compatible with GPU export, i.e. use --device 0" | |
assert ( | |
not dynamic | |
), "--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both" | |
model = attempt_load( | |
weights, device=device, inplace=True, fuse=True | |
) # load FP32 model | |
# Checks | |
imgsz *= 2 if len(imgsz) == 1 else 1 # expand | |
if optimize: | |
assert ( | |
device.type == "cpu" | |
), "--optimize not compatible with cuda devices, i.e. use --device cpu" | |
# Input | |
gs = int(max(model.stride)) # grid size (max stride) | |
imgsz = [ | |
check_img_size(x, gs) for x in imgsz | |
] # verify img_size are gs-multiples | |
im = torch.zeros(batch_size, 3, *imgsz).to( | |
device | |
) # image size(1,3,320,192) BCHW iDetection | |
# Update model | |
model.eval() | |
for k, m in model.named_modules(): | |
if isinstance(m, Detect): | |
m.inplace = inplace | |
m.dynamic = dynamic | |
m.export = True | |
for _ in range(2): | |
y = model(im) # dry runs | |
if half and not coreml: | |
im, model = im.half(), model.half() # to FP16 | |
shape = tuple( | |
(y[0] if isinstance(y, tuple) else y).shape | |
) # model output shape | |
metadata = { | |
"stride": int(max(model.stride)), | |
"names": model.names, | |
} # model metadata | |
LOGGER.info( | |
f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)" | |
) | |
# Exports | |
f = [""] * len(fmts) # exported filenames | |
warnings.filterwarnings( | |
action="ignore", category=torch.jit.TracerWarning | |
) # suppress TracerWarning | |
if jit: # TorchScript | |
f[0], _ = export_torchscript(model, im, file, optimize) | |
if engine: # TensorRT required before ONNX | |
f[1], _ = export_engine( | |
model, im, file, half, dynamic, simplify, workspace, verbose | |
) | |
if onnx or xml: # OpenVINO requires ONNX | |
f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify) | |
if xml: # OpenVINO | |
f[3], _ = export_openvino(file, metadata, half) | |
if coreml: # CoreML | |
f[4], _ = export_coreml(model, im, file, int8, half) | |
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats | |
assert ( | |
not tflite or not tfjs | |
), "TFLite and TF.js models must be exported separately, please pass only one type." | |
assert not isinstance( | |
model, ClassificationModel | |
), "ClassificationModel export to TF formats not yet supported." | |
f[5], s_model = export_saved_model( | |
model.cpu(), | |
im, | |
file, | |
dynamic, | |
tf_nms=nms or agnostic_nms or tfjs, | |
agnostic_nms=agnostic_nms or tfjs, | |
topk_per_class=topk_per_class, | |
topk_all=topk_all, | |
iou_thres=iou_thres, | |
conf_thres=conf_thres, | |
keras=keras, | |
) | |
if pb or tfjs: # pb prerequisite to tfjs | |
f[6], _ = export_pb(s_model, file) | |
if tflite or edgetpu: | |
f[7], _ = export_tflite( | |
s_model, | |
im, | |
file, | |
int8 or edgetpu, | |
data=data, | |
nms=nms, | |
agnostic_nms=agnostic_nms, | |
) | |
if edgetpu: | |
f[8], _ = export_edgetpu(file) | |
add_tflite_metadata( | |
f[8] or f[7], metadata, num_outputs=len(s_model.outputs) | |
) | |
if tfjs: | |
f[9], _ = export_tfjs(file) | |
if paddle: # PaddlePaddle | |
f[10], _ = export_paddle(model, im, file, metadata) | |
# Finish | |
f = [str(x) for x in f if x] # filter out '' and None | |
if any(f): | |
cls, det, seg = ( | |
isinstance(model, x) | |
for x in (ClassificationModel, DetectionModel, SegmentationModel) | |
) # type | |
det &= ( | |
not seg | |
) # segmentation models inherit from SegmentationModel(DetectionModel) | |
dir = Path("segment" if seg else "classify" if cls else "") | |
h = "--half" if half else "" # --half FP16 inference arg | |
s = ( | |
"# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference" | |
if cls | |
else "# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference" | |
if seg | |
else "" | |
) | |
LOGGER.info( | |
f"\nExport complete ({time.time() - t:.1f}s)" | |
f"\nResults saved to {colorstr('bold', file.parent.resolve())}" | |
f"\nDetect: python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}" | |
f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}" | |
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}" | |
f"\nVisualize: https://netron.app" | |
) | |
return f # return list of exported files/dirs | |
def parse_opt(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--data", | |
type=str, | |
default=ROOT / "data/coco128.yaml", | |
help="dataset.yaml path", | |
) | |
parser.add_argument( | |
"--weights", | |
nargs="+", | |
type=str, | |
default=ROOT / "yolov5s.pt", | |
help="model.pt path(s)", | |
) | |
parser.add_argument( | |
"--imgsz", | |
"--img", | |
"--img-size", | |
nargs="+", | |
type=int, | |
default=[640, 640], | |
help="image (h, w)", | |
) | |
parser.add_argument("--batch-size", type=int, default=1, help="batch size") | |
parser.add_argument( | |
"--device", default="cpu", help="cuda device, i.e. 0 or 0,1,2,3 or cpu" | |
) | |
parser.add_argument( | |
"--half", action="store_true", help="FP16 half-precision export" | |
) | |
parser.add_argument( | |
"--inplace", | |
action="store_true", | |
help="set YOLOv5 Detect() inplace=True", | |
) | |
parser.add_argument("--keras", action="store_true", help="TF: use Keras") | |
parser.add_argument( | |
"--optimize", | |
action="store_true", | |
help="TorchScript: optimize for mobile", | |
) | |
parser.add_argument( | |
"--int8", action="store_true", help="CoreML/TF INT8 quantization" | |
) | |
parser.add_argument( | |
"--dynamic", action="store_true", help="ONNX/TF/TensorRT: dynamic axes" | |
) | |
parser.add_argument( | |
"--simplify", action="store_true", help="ONNX: simplify model" | |
) | |
parser.add_argument( | |
"--opset", type=int, default=17, help="ONNX: opset version" | |
) | |
parser.add_argument( | |
"--verbose", action="store_true", help="TensorRT: verbose log" | |
) | |
parser.add_argument( | |
"--workspace", | |
type=int, | |
default=4, | |
help="TensorRT: workspace size (GB)", | |
) | |
parser.add_argument( | |
"--nms", action="store_true", help="TF: add NMS to model" | |
) | |
parser.add_argument( | |
"--agnostic-nms", | |
action="store_true", | |
help="TF: add agnostic NMS to model", | |
) | |
parser.add_argument( | |
"--topk-per-class", | |
type=int, | |
default=100, | |
help="TF.js NMS: topk per class to keep", | |
) | |
parser.add_argument( | |
"--topk-all", | |
type=int, | |
default=100, | |
help="TF.js NMS: topk for all classes to keep", | |
) | |
parser.add_argument( | |
"--iou-thres", | |
type=float, | |
default=0.45, | |
help="TF.js NMS: IoU threshold", | |
) | |
parser.add_argument( | |
"--conf-thres", | |
type=float, | |
default=0.25, | |
help="TF.js NMS: confidence threshold", | |
) | |
parser.add_argument( | |
"--include", | |
nargs="+", | |
default=["torchscript"], | |
help="torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle", | |
) | |
opt = parser.parse_args() | |
print_args(vars(opt)) | |
return opt | |
def main(opt): | |
for opt.weights in ( | |
opt.weights if isinstance(opt.weights, list) else [opt.weights] | |
): | |
run(**vars(opt)) | |
if __name__ == "__main__": | |
opt = parse_opt() | |
main(opt) | |