plano_lit / export.py
SakshiRathi77's picture
Upload 33 files
12b0903 verified
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
Format | `export.py --include` | Model
--- | --- | ---
PyTorch | - | yolov5s.pt
TorchScript | `torchscript` | yolov5s.torchscript
ONNX | `onnx` | yolov5s.onnx
OpenVINO | `openvino` | yolov5s_openvino_model/
TensorRT | `engine` | yolov5s.engine
CoreML | `coreml` | yolov5s.mlmodel
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
TensorFlow GraphDef | `pb` | yolov5s.pb
TensorFlow Lite | `tflite` | yolov5s.tflite
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
TensorFlow.js | `tfjs` | yolov5s_web_model/
PaddlePaddle | `paddle` | yolov5s_paddle_model/
Requirements:
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
Usage:
$ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
Inference:
$ python detect.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS-only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
TensorFlow.js:
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
$ npm install
$ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
$ npm start
"""
import argparse
import contextlib
import json
import os
import platform
import re
import subprocess
import sys
import time
import warnings
from pathlib import Path
import pandas as pd
import torch
from torch.utils.mobile_optimizer import optimize_for_mobile
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
if platform.system() != "Windows":
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.experimental import attempt_load
from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel
from utils.dataloaders import LoadImages
from utils.general import (
LOGGER,
Profile,
check_dataset,
check_img_size,
check_requirements,
check_version,
check_yaml,
colorstr,
file_size,
get_default_args,
print_args,
url2file,
yaml_save,
)
from utils.torch_utils import select_device, smart_inference_mode
MACOS = platform.system() == "Darwin" # macOS environment
def export_formats():
# YOLOv5 export formats
x = [
["PyTorch", "-", ".pt", True, True],
["TorchScript", "torchscript", ".torchscript", True, True],
["ONNX", "onnx", ".onnx", True, True],
["OpenVINO", "openvino", "_openvino_model", True, False],
["TensorRT", "engine", ".engine", False, True],
["CoreML", "coreml", ".mlmodel", True, False],
["TensorFlow SavedModel", "saved_model", "_saved_model", True, True],
["TensorFlow GraphDef", "pb", ".pb", True, True],
["TensorFlow Lite", "tflite", ".tflite", True, False],
["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", False, False],
["TensorFlow.js", "tfjs", "_web_model", False, False],
["PaddlePaddle", "paddle", "_paddle_model", True, True],
]
return pd.DataFrame(
x, columns=["Format", "Argument", "Suffix", "CPU", "GPU"]
)
def try_export(inner_func):
# YOLOv5 export decorator, i..e @try_export
inner_args = get_default_args(inner_func)
def outer_func(*args, **kwargs):
prefix = inner_args["prefix"]
try:
with Profile() as dt:
f, model = inner_func(*args, **kwargs)
LOGGER.info(
f"{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)"
)
return f, model
except Exception as e:
LOGGER.info(f"{prefix} export failure ❌ {dt.t:.1f}s: {e}")
return None, None
return outer_func
@try_export
def export_torchscript(
model, im, file, optimize, prefix=colorstr("TorchScript:")
):
# YOLOv5 TorchScript model export
LOGGER.info(
f"\n{prefix} starting export with torch {torch.__version__}..."
)
f = file.with_suffix(".torchscript")
ts = torch.jit.trace(model, im, strict=False)
d = {
"shape": im.shape,
"stride": int(max(model.stride)),
"names": model.names,
}
extra_files = {"config.txt": json.dumps(d)} # torch._C.ExtraFilesMap()
if (
optimize
): # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
optimize_for_mobile(ts)._save_for_lite_interpreter(
str(f), _extra_files=extra_files
)
else:
ts.save(str(f), _extra_files=extra_files)
return f, None
@try_export
def export_onnx(
model, im, file, opset, dynamic, simplify, prefix=colorstr("ONNX:")
):
# YOLOv5 ONNX export
check_requirements("onnx>=1.12.0")
import onnx
LOGGER.info(f"\n{prefix} starting export with onnx {onnx.__version__}...")
f = file.with_suffix(".onnx")
output_names = (
["output0", "output1"]
if isinstance(model, SegmentationModel)
else ["output0"]
)
if dynamic:
dynamic = {
"images": {0: "batch", 2: "height", 3: "width"}
} # shape(1,3,640,640)
if isinstance(model, SegmentationModel):
dynamic["output0"] = {
0: "batch",
1: "anchors",
} # shape(1,25200,85)
dynamic["output1"] = {
0: "batch",
2: "mask_height",
3: "mask_width",
} # shape(1,32,160,160)
elif isinstance(model, DetectionModel):
dynamic["output0"] = {
0: "batch",
1: "anchors",
} # shape(1,25200,85)
torch.onnx.export(
model.cpu()
if dynamic
else model, # --dynamic only compatible with cpu
im.cpu() if dynamic else im,
f,
verbose=False,
opset_version=opset,
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
input_names=["images"],
output_names=output_names,
dynamic_axes=dynamic or None,
)
# Checks
model_onnx = onnx.load(f) # load onnx model
onnx.checker.check_model(model_onnx) # check onnx model
# Metadata
d = {"stride": int(max(model.stride)), "names": model.names}
for k, v in d.items():
meta = model_onnx.metadata_props.add()
meta.key, meta.value = k, str(v)
onnx.save(model_onnx, f)
# Simplify
if simplify:
try:
cuda = torch.cuda.is_available()
check_requirements(
(
"onnxruntime-gpu" if cuda else "onnxruntime",
"onnx-simplifier>=0.4.1",
)
)
import onnxsim
LOGGER.info(
f"{prefix} simplifying with onnx-simplifier {onnxsim.__version__}..."
)
model_onnx, check = onnxsim.simplify(model_onnx)
assert check, "assert check failed"
onnx.save(model_onnx, f)
except Exception as e:
LOGGER.info(f"{prefix} simplifier failure: {e}")
return f, model_onnx
@try_export
def export_openvino(file, metadata, half, prefix=colorstr("OpenVINO:")):
# YOLOv5 OpenVINO export
check_requirements(
"openvino-dev"
) # requires openvino-dev: https://pypi.org/project/openvino-dev/
import openvino.inference_engine as ie
LOGGER.info(
f"\n{prefix} starting export with openvino {ie.__version__}..."
)
f = str(file).replace(".pt", f"_openvino_model{os.sep}")
cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}"
subprocess.run(cmd.split(), check=True, env=os.environ) # export
yaml_save(
Path(f) / file.with_suffix(".yaml").name, metadata
) # add metadata.yaml
return f, None
@try_export
def export_paddle(model, im, file, metadata, prefix=colorstr("PaddlePaddle:")):
# YOLOv5 Paddle export
check_requirements(("paddlepaddle", "x2paddle"))
import x2paddle
from x2paddle.convert import pytorch2paddle
LOGGER.info(
f"\n{prefix} starting export with X2Paddle {x2paddle.__version__}..."
)
f = str(file).replace(".pt", f"_paddle_model{os.sep}")
pytorch2paddle(
module=model, save_dir=f, jit_type="trace", input_examples=[im]
) # export
yaml_save(
Path(f) / file.with_suffix(".yaml").name, metadata
) # add metadata.yaml
return f, None
@try_export
def export_coreml(model, im, file, int8, half, prefix=colorstr("CoreML:")):
# YOLOv5 CoreML export
check_requirements("coremltools")
import coremltools as ct
LOGGER.info(
f"\n{prefix} starting export with coremltools {ct.__version__}..."
)
f = file.with_suffix(".mlmodel")
ts = torch.jit.trace(model, im, strict=False) # TorchScript model
ct_model = ct.convert(
ts,
inputs=[
ct.ImageType(
"image", shape=im.shape, scale=1 / 255, bias=[0, 0, 0]
)
],
)
bits, mode = (
(8, "kmeans_lut") if int8 else (16, "linear") if half else (32, None)
)
if bits < 32:
if MACOS: # quantization only supported on macOS
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore", category=DeprecationWarning
) # suppress numpy==1.20 float warning
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(
ct_model, bits, mode
)
else:
print(
f"{prefix} quantization only supported on macOS, skipping..."
)
ct_model.save(f)
return f, ct_model
@try_export
def export_engine(
model,
im,
file,
half,
dynamic,
simplify,
workspace=4,
verbose=False,
prefix=colorstr("TensorRT:"),
):
# YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
assert (
im.device.type != "cpu"
), "export running on CPU but must be on GPU, i.e. `python export.py --device 0`"
try:
import tensorrt as trt
except Exception:
if platform.system() == "Linux":
check_requirements(
"nvidia-tensorrt",
cmds="-U --index-url https://pypi.ngc.nvidia.com",
)
import tensorrt as trt
if (
trt.__version__[0] == "7"
): # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
grid = model.model[-1].anchor_grid
model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
model.model[-1].anchor_grid = grid
else: # TensorRT >= 8
check_version(
trt.__version__, "8.0.0", hard=True
) # require tensorrt>=8.0.0
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
onnx = file.with_suffix(".onnx")
LOGGER.info(
f"\n{prefix} starting export with TensorRT {trt.__version__}..."
)
assert onnx.exists(), f"failed to export ONNX file: {onnx}"
f = file.with_suffix(".engine") # TensorRT engine file
logger = trt.Logger(trt.Logger.INFO)
if verbose:
logger.min_severity = trt.Logger.Severity.VERBOSE
builder = trt.Builder(logger)
config = builder.create_builder_config()
config.max_workspace_size = workspace * 1 << 30
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
network = builder.create_network(flag)
parser = trt.OnnxParser(network, logger)
if not parser.parse_from_file(str(onnx)):
raise RuntimeError(f"failed to load ONNX file: {onnx}")
inputs = [network.get_input(i) for i in range(network.num_inputs)]
outputs = [network.get_output(i) for i in range(network.num_outputs)]
for inp in inputs:
LOGGER.info(
f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}'
)
for out in outputs:
LOGGER.info(
f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}'
)
if dynamic:
if im.shape[0] <= 1:
LOGGER.warning(
f"{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument"
)
profile = builder.create_optimization_profile()
for inp in inputs:
profile.set_shape(
inp.name,
(1, *im.shape[1:]),
(max(1, im.shape[0] // 2), *im.shape[1:]),
im.shape,
)
config.add_optimization_profile(profile)
LOGGER.info(
f"{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}"
)
if builder.platform_has_fast_fp16 and half:
config.set_flag(trt.BuilderFlag.FP16)
with builder.build_engine(network, config) as engine, open(f, "wb") as t:
t.write(engine.serialize())
return f, None
@try_export
def export_saved_model(
model,
im,
file,
dynamic,
tf_nms=False,
agnostic_nms=False,
topk_per_class=100,
topk_all=100,
iou_thres=0.45,
conf_thres=0.25,
keras=False,
prefix=colorstr("TensorFlow SavedModel:"),
):
# YOLOv5 TensorFlow SavedModel export
try:
import tensorflow as tf
except Exception:
check_requirements(
f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}"
)
import tensorflow as tf
from tensorflow.python.framework.convert_to_constants import (
convert_variables_to_constants_v2,
)
from models.tf import TFModel
LOGGER.info(
f"\n{prefix} starting export with tensorflow {tf.__version__}..."
)
f = str(file).replace(".pt", "_saved_model")
batch_size, ch, *imgsz = list(im.shape) # BCHW
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
_ = tf_model.predict(
im,
tf_nms,
agnostic_nms,
topk_per_class,
topk_all,
iou_thres,
conf_thres,
)
inputs = tf.keras.Input(
shape=(*imgsz, ch), batch_size=None if dynamic else batch_size
)
outputs = tf_model.predict(
inputs,
tf_nms,
agnostic_nms,
topk_per_class,
topk_all,
iou_thres,
conf_thres,
)
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
keras_model.trainable = False
keras_model.summary()
if keras:
keras_model.save(f, save_format="tf")
else:
spec = tf.TensorSpec(
keras_model.inputs[0].shape, keras_model.inputs[0].dtype
)
m = tf.function(lambda x: keras_model(x)) # full model
m = m.get_concrete_function(spec)
frozen_func = convert_variables_to_constants_v2(m)
tfm = tf.Module()
tfm.__call__ = tf.function(
lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec]
)
tfm.__call__(im)
tf.saved_model.save(
tfm,
f,
options=tf.saved_model.SaveOptions(
experimental_custom_gradients=False
)
if check_version(tf.__version__, "2.6")
else tf.saved_model.SaveOptions(),
)
return f, keras_model
@try_export
def export_pb(keras_model, file, prefix=colorstr("TensorFlow GraphDef:")):
# YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
import tensorflow as tf
from tensorflow.python.framework.convert_to_constants import (
convert_variables_to_constants_v2,
)
LOGGER.info(
f"\n{prefix} starting export with tensorflow {tf.__version__}..."
)
f = file.with_suffix(".pb")
m = tf.function(lambda x: keras_model(x)) # full model
m = m.get_concrete_function(
tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
)
frozen_func = convert_variables_to_constants_v2(m)
frozen_func.graph.as_graph_def()
tf.io.write_graph(
graph_or_graph_def=frozen_func.graph,
logdir=str(f.parent),
name=f.name,
as_text=False,
)
return f, None
@try_export
def export_tflite(
keras_model,
im,
file,
int8,
data,
nms,
agnostic_nms,
prefix=colorstr("TensorFlow Lite:"),
):
# YOLOv5 TensorFlow Lite export
import tensorflow as tf
LOGGER.info(
f"\n{prefix} starting export with tensorflow {tf.__version__}..."
)
batch_size, ch, *imgsz = list(im.shape) # BCHW
f = str(file).replace(".pt", "-fp16.tflite")
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
converter.target_spec.supported_types = [tf.float16]
converter.optimizations = [tf.lite.Optimize.DEFAULT]
if int8:
from models.tf import representative_dataset_gen
dataset = LoadImages(
check_dataset(check_yaml(data))["train"],
img_size=imgsz,
auto=False,
)
converter.representative_dataset = lambda: representative_dataset_gen(
dataset, ncalib=100
)
converter.target_spec.supported_ops = [
tf.lite.OpsSet.TFLITE_BUILTINS_INT8
]
converter.target_spec.supported_types = []
converter.inference_input_type = tf.uint8 # or tf.int8
converter.inference_output_type = tf.uint8 # or tf.int8
converter.experimental_new_quantizer = True
f = str(file).replace(".pt", "-int8.tflite")
if nms or agnostic_nms:
converter.target_spec.supported_ops.append(
tf.lite.OpsSet.SELECT_TF_OPS
)
tflite_model = converter.convert()
open(f, "wb").write(tflite_model)
return f, None
@try_export
def export_edgetpu(file, prefix=colorstr("Edge TPU:")):
# YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
cmd = "edgetpu_compiler --version"
help_url = "https://coral.ai/docs/edgetpu/compiler/"
assert (
platform.system() == "Linux"
), f"export only supported on Linux. See {help_url}"
if subprocess.run(f"{cmd} >/dev/null", shell=True).returncode != 0:
LOGGER.info(
f"\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}"
)
sudo = (
subprocess.run("sudo --version >/dev/null", shell=True).returncode
== 0
) # sudo installed on system
for c in (
"curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -",
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
"sudo apt-get update",
"sudo apt-get install edgetpu-compiler",
):
subprocess.run(
c if sudo else c.replace("sudo ", ""), shell=True, check=True
)
ver = (
subprocess.run(cmd, shell=True, capture_output=True, check=True)
.stdout.decode()
.split()[-1]
)
LOGGER.info(f"\n{prefix} starting export with Edge TPU compiler {ver}...")
f = str(file).replace(".pt", "-int8_edgetpu.tflite") # Edge TPU model
f_tfl = str(file).replace(".pt", "-int8.tflite") # TFLite model
cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {file.parent} {f_tfl}"
subprocess.run(cmd.split(), check=True)
return f, None
@try_export
def export_tfjs(file, prefix=colorstr("TensorFlow.js:")):
# YOLOv5 TensorFlow.js export
check_requirements("tensorflowjs")
import tensorflowjs as tfjs
LOGGER.info(
f"\n{prefix} starting export with tensorflowjs {tfjs.__version__}..."
)
f = str(file).replace(".pt", "_web_model") # js dir
f_pb = file.with_suffix(".pb") # *.pb path
f_json = f"{f}/model.json" # *.json path
cmd = (
f"tensorflowjs_converter --input_format=tf_frozen_model "
f"--output_node_names=Identity,Identity_1,Identity_2,Identity_3 {f_pb} {f}"
)
subprocess.run(cmd.split())
json = Path(f_json).read_text()
with open(f_json, "w") as j: # sort JSON Identity_* in ascending order
subst = re.sub(
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
r'"Identity.?.?": {"name": "Identity.?.?"}, '
r'"Identity.?.?": {"name": "Identity.?.?"}, '
r'"Identity.?.?": {"name": "Identity.?.?"}}}',
r'{"outputs": {"Identity": {"name": "Identity"}, '
r'"Identity_1": {"name": "Identity_1"}, '
r'"Identity_2": {"name": "Identity_2"}, '
r'"Identity_3": {"name": "Identity_3"}}}',
json,
)
j.write(subst)
return f, None
def add_tflite_metadata(file, metadata, num_outputs):
# Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata
with contextlib.suppress(ImportError):
# check_requirements('tflite_support')
from tflite_support import flatbuffers
from tflite_support import metadata as _metadata
from tflite_support import metadata_schema_py_generated as _metadata_fb
tmp_file = Path("/tmp/meta.txt")
with open(tmp_file, "w") as meta_f:
meta_f.write(str(metadata))
model_meta = _metadata_fb.ModelMetadataT()
label_file = _metadata_fb.AssociatedFileT()
label_file.name = tmp_file.name
model_meta.associatedFiles = [label_file]
subgraph = _metadata_fb.SubGraphMetadataT()
subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()]
subgraph.outputTensorMetadata = [
_metadata_fb.TensorMetadataT()
] * num_outputs
model_meta.subgraphMetadata = [subgraph]
b = flatbuffers.Builder(0)
b.Finish(
model_meta.Pack(b),
_metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER,
)
metadata_buf = b.Output()
populator = _metadata.MetadataPopulator.with_model_file(file)
populator.load_metadata_buffer(metadata_buf)
populator.load_associated_files([str(tmp_file)])
populator.populate()
tmp_file.unlink()
@smart_inference_mode()
def run(
data=ROOT / "data/coco128.yaml", # 'dataset.yaml path'
weights=ROOT / "yolov5s.pt", # weights path
imgsz=(640, 640), # image (height, width)
batch_size=1, # batch size
device="cpu", # cuda device, i.e. 0 or 0,1,2,3 or cpu
include=("torchscript", "onnx"), # include formats
half=False, # FP16 half-precision export
inplace=False, # set YOLOv5 Detect() inplace=True
keras=False, # use Keras
optimize=False, # TorchScript: optimize for mobile
int8=False, # CoreML/TF INT8 quantization
dynamic=False, # ONNX/TF/TensorRT: dynamic axes
simplify=False, # ONNX: simplify model
opset=12, # ONNX: opset version
verbose=False, # TensorRT: verbose log
workspace=4, # TensorRT: workspace size (GB)
nms=False, # TF: add NMS to model
agnostic_nms=False, # TF: add agnostic NMS to model
topk_per_class=100, # TF.js NMS: topk per class to keep
topk_all=100, # TF.js NMS: topk for all classes to keep
iou_thres=0.45, # TF.js NMS: IoU threshold
conf_thres=0.25, # TF.js NMS: confidence threshold
):
t = time.time()
include = [x.lower() for x in include] # to lowercase
fmts = tuple(export_formats()["Argument"][1:]) # --include arguments
flags = [x in include for x in fmts]
assert sum(flags) == len(
include
), f"ERROR: Invalid --include {include}, valid --include arguments are {fmts}"
(
jit,
onnx,
xml,
engine,
coreml,
saved_model,
pb,
tflite,
edgetpu,
tfjs,
paddle,
) = flags # export booleans
file = Path(
url2file(weights)
if str(weights).startswith(("http:/", "https:/"))
else weights
) # PyTorch weights
# Load PyTorch model
device = select_device(device)
if half:
assert (
device.type != "cpu" or coreml
), "--half only compatible with GPU export, i.e. use --device 0"
assert (
not dynamic
), "--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both"
model = attempt_load(
weights, device=device, inplace=True, fuse=True
) # load FP32 model
# Checks
imgsz *= 2 if len(imgsz) == 1 else 1 # expand
if optimize:
assert (
device.type == "cpu"
), "--optimize not compatible with cuda devices, i.e. use --device cpu"
# Input
gs = int(max(model.stride)) # grid size (max stride)
imgsz = [
check_img_size(x, gs) for x in imgsz
] # verify img_size are gs-multiples
im = torch.zeros(batch_size, 3, *imgsz).to(
device
) # image size(1,3,320,192) BCHW iDetection
# Update model
model.eval()
for k, m in model.named_modules():
if isinstance(m, Detect):
m.inplace = inplace
m.dynamic = dynamic
m.export = True
for _ in range(2):
y = model(im) # dry runs
if half and not coreml:
im, model = im.half(), model.half() # to FP16
shape = tuple(
(y[0] if isinstance(y, tuple) else y).shape
) # model output shape
metadata = {
"stride": int(max(model.stride)),
"names": model.names,
} # model metadata
LOGGER.info(
f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)"
)
# Exports
f = [""] * len(fmts) # exported filenames
warnings.filterwarnings(
action="ignore", category=torch.jit.TracerWarning
) # suppress TracerWarning
if jit: # TorchScript
f[0], _ = export_torchscript(model, im, file, optimize)
if engine: # TensorRT required before ONNX
f[1], _ = export_engine(
model, im, file, half, dynamic, simplify, workspace, verbose
)
if onnx or xml: # OpenVINO requires ONNX
f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify)
if xml: # OpenVINO
f[3], _ = export_openvino(file, metadata, half)
if coreml: # CoreML
f[4], _ = export_coreml(model, im, file, int8, half)
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
assert (
not tflite or not tfjs
), "TFLite and TF.js models must be exported separately, please pass only one type."
assert not isinstance(
model, ClassificationModel
), "ClassificationModel export to TF formats not yet supported."
f[5], s_model = export_saved_model(
model.cpu(),
im,
file,
dynamic,
tf_nms=nms or agnostic_nms or tfjs,
agnostic_nms=agnostic_nms or tfjs,
topk_per_class=topk_per_class,
topk_all=topk_all,
iou_thres=iou_thres,
conf_thres=conf_thres,
keras=keras,
)
if pb or tfjs: # pb prerequisite to tfjs
f[6], _ = export_pb(s_model, file)
if tflite or edgetpu:
f[7], _ = export_tflite(
s_model,
im,
file,
int8 or edgetpu,
data=data,
nms=nms,
agnostic_nms=agnostic_nms,
)
if edgetpu:
f[8], _ = export_edgetpu(file)
add_tflite_metadata(
f[8] or f[7], metadata, num_outputs=len(s_model.outputs)
)
if tfjs:
f[9], _ = export_tfjs(file)
if paddle: # PaddlePaddle
f[10], _ = export_paddle(model, im, file, metadata)
# Finish
f = [str(x) for x in f if x] # filter out '' and None
if any(f):
cls, det, seg = (
isinstance(model, x)
for x in (ClassificationModel, DetectionModel, SegmentationModel)
) # type
det &= (
not seg
) # segmentation models inherit from SegmentationModel(DetectionModel)
dir = Path("segment" if seg else "classify" if cls else "")
h = "--half" if half else "" # --half FP16 inference arg
s = (
"# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference"
if cls
else "# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference"
if seg
else ""
)
LOGGER.info(
f"\nExport complete ({time.time() - t:.1f}s)"
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
f"\nDetect: python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}"
f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}"
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}"
f"\nVisualize: https://netron.app"
)
return f # return list of exported files/dirs
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument(
"--data",
type=str,
default=ROOT / "data/coco128.yaml",
help="dataset.yaml path",
)
parser.add_argument(
"--weights",
nargs="+",
type=str,
default=ROOT / "yolov5s.pt",
help="model.pt path(s)",
)
parser.add_argument(
"--imgsz",
"--img",
"--img-size",
nargs="+",
type=int,
default=[640, 640],
help="image (h, w)",
)
parser.add_argument("--batch-size", type=int, default=1, help="batch size")
parser.add_argument(
"--device", default="cpu", help="cuda device, i.e. 0 or 0,1,2,3 or cpu"
)
parser.add_argument(
"--half", action="store_true", help="FP16 half-precision export"
)
parser.add_argument(
"--inplace",
action="store_true",
help="set YOLOv5 Detect() inplace=True",
)
parser.add_argument("--keras", action="store_true", help="TF: use Keras")
parser.add_argument(
"--optimize",
action="store_true",
help="TorchScript: optimize for mobile",
)
parser.add_argument(
"--int8", action="store_true", help="CoreML/TF INT8 quantization"
)
parser.add_argument(
"--dynamic", action="store_true", help="ONNX/TF/TensorRT: dynamic axes"
)
parser.add_argument(
"--simplify", action="store_true", help="ONNX: simplify model"
)
parser.add_argument(
"--opset", type=int, default=17, help="ONNX: opset version"
)
parser.add_argument(
"--verbose", action="store_true", help="TensorRT: verbose log"
)
parser.add_argument(
"--workspace",
type=int,
default=4,
help="TensorRT: workspace size (GB)",
)
parser.add_argument(
"--nms", action="store_true", help="TF: add NMS to model"
)
parser.add_argument(
"--agnostic-nms",
action="store_true",
help="TF: add agnostic NMS to model",
)
parser.add_argument(
"--topk-per-class",
type=int,
default=100,
help="TF.js NMS: topk per class to keep",
)
parser.add_argument(
"--topk-all",
type=int,
default=100,
help="TF.js NMS: topk for all classes to keep",
)
parser.add_argument(
"--iou-thres",
type=float,
default=0.45,
help="TF.js NMS: IoU threshold",
)
parser.add_argument(
"--conf-thres",
type=float,
default=0.25,
help="TF.js NMS: confidence threshold",
)
parser.add_argument(
"--include",
nargs="+",
default=["torchscript"],
help="torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle",
)
opt = parser.parse_args()
print_args(vars(opt))
return opt
def main(opt):
for opt.weights in (
opt.weights if isinstance(opt.weights, list) else [opt.weights]
):
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)