Spaces:
Sleeping
Sleeping
# import gradio as gr | |
# import spaces | |
# from huggingface_hub import hf_hub_download | |
# def download_models(model_id): | |
# hf_hub_download("SakshiRathi77/void-space-detection", filename=f"{model_id}", local_dir=f"./") | |
# return f"./{model_id}" | |
# @spaces.GPU | |
# def yolov9_inference(img_path, model_id, image_size, conf_threshold, iou_threshold): | |
# """ | |
# Load a YOLOv9 model, configure it, perform inference on an image, and optionally adjust | |
# the input size and apply test time augmentation. | |
# :param model_path: Path to the YOLOv9 model file. | |
# :param conf_threshold: Confidence threshold for NMS. | |
# :param iou_threshold: IoU threshold for NMS. | |
# :param img_path: Path to the image file. | |
# :param size: Optional, input size for inference. | |
# :return: A tuple containing the detections (boxes, scores, categories) and the results object for further actions like displaying. | |
# """ | |
# # Import YOLOv9 | |
# import yolov9 | |
# # Load the model | |
# model_path = download_models(model_id) | |
# model = yolov9.load(model_path, device="cuda:0") | |
# # Set model parameters | |
# model.conf = conf_threshold | |
# model.iou = iou_threshold | |
# # Perform inference | |
# results = model(img_path, size=image_size) | |
# # Optionally, show detection bounding boxes on image | |
# output = results.render() | |
# return output[0] | |
# def app(): | |
# with gr.Blocks(): | |
# with gr.Row(): | |
# with gr.Column(): | |
# img_path = gr.Image(type="filepath", label="Image") | |
# model_path = gr.Dropdown( | |
# label="Model", | |
# choices=[ | |
# "state_dict.pt" | |
# ], | |
# value="state_dict.pt", | |
# ) | |
# image_size = gr.Slider( | |
# label="Image Size", | |
# minimum=320, | |
# maximum=1280, | |
# step=32, | |
# value=640, | |
# ) | |
# conf_threshold = gr.Slider( | |
# label="Confidence Threshold", | |
# minimum=0.1, | |
# maximum=1.0, | |
# step=0.1, | |
# value=0.4, | |
# ) | |
# iou_threshold = gr.Slider( | |
# label="IoU Threshold", | |
# minimum=0.1, | |
# maximum=1.0, | |
# step=0.1, | |
# value=0.5, | |
# ) | |
# yolov9_infer = gr.Button(value="Inference") | |
# with gr.Column(): | |
# output_numpy = gr.Image(type="numpy",label="Output") | |
# yolov9_infer.click( | |
# fn=yolov9_inference, | |
# inputs=[ | |
# img_path, | |
# model_path, | |
# image_size, | |
# conf_threshold, | |
# iou_threshold, | |
# ], | |
# outputs=[output_numpy], | |
# ) | |
# # gr.Examples( | |
# # examples=[ | |
# # [ | |
# # "data/zidane.jpg", | |
# # "gelan-e.pt", | |
# # 640, | |
# # 0.4, | |
# # 0.5, | |
# # ], | |
# # [ | |
# # "data/huggingface.jpg", | |
# # "yolov9-c.pt", | |
# # 640, | |
# # 0.4, | |
# # 0.5, | |
# # ], | |
# # ], | |
# # fn=yolov9_inference, | |
# # inputs=[ | |
# # img_path, | |
# # model_path, | |
# # image_size, | |
# # conf_threshold, | |
# # iou_threshold, | |
# # ], | |
# # outputs=[output_numpy], | |
# # cache_examples=True, | |
# # ) | |
# gradio_app = gr.Blocks() | |
# with gradio_app: | |
# gr.HTML( | |
# """ | |
# <h1 style='text-align: center'> | |
# YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information | |
# </h1> | |
# """) | |
# gr.HTML( | |
# """ | |
# <h3 style='text-align: center'> | |
# Follow me for more! | |
# </h3> | |
# """) | |
# with gr.Row(): | |
# with gr.Column(): | |
# app() | |
# gradio_app.launch(debug=True) | |
# make sure you have the following dependencies | |
import gradio as gr | |
import torch | |
from torchvision import transforms | |
from PIL import Image | |
# Load the YOLOv9 model | |
model_path = "best.pt" # Replace with the path to your YOLOv9 model | |
model = torch.load(model_path) | |
# Define preprocessing transforms | |
preprocess = transforms.Compose([ | |
transforms.Resize((640, 640)), # Resize image to model input size | |
transforms.ToTensor(), # Convert image to tensor | |
]) | |
# Define a function to perform inference | |
def detect_void(image): | |
# Preprocess the input image | |
image = Image.fromarray(image) | |
image = preprocess(image).unsqueeze(0) # Add batch dimension | |
# Perform inference | |
with torch.no_grad(): | |
output = model(image) | |
# Post-process the output if needed | |
# For example, draw bounding boxes on the image | |
# Convert the image back to numpy array | |
# and return the result | |
return output.squeeze().numpy() | |
# Define Gradio interface components | |
input_image = gr.inputs.Image(shape=(640, 640), label="Input Image") | |
output_image = gr.outputs.Image(label="Output Image") | |
# Create Gradio interface | |
gr.Interface(fn=detect_void, inputs=input_image, outputs=output_image, title="Void Detection App").launch() | |