SalML's picture
initial commit of app.py
b965b5d
raw
history blame
6.06 kB
import streamlit as st
from PIL import Image
import os
import TDTSR
import pytesseract
from pytesseract import Output
import postprocess as pp
import pandas as pd
import matplotlib.pyplot as plt
import cv2
import numpy as np
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from cv2 import dnn_superres
pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
st.set_option('deprecation.showPyplotGlobalUse', False)
st.set_page_config(layout='wide')
st.title("Table Detection and Table Structure Recognition")
c1, c2, c3 = st.columns((1,1,1))
def PIL_to_cv(pil_img):
return cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
def cv_to_PIL(cv_img):
return Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB))
def pytess(cell_pil_img):
return ' '.join(pytesseract.image_to_data(cell_pil_img, output_type=Output.DICT, config='preserve_interword_spaces')['text']).strip()
def TrOCR(cell_pil_img):
processor = TrOCRProcessor.from_pretrained("SalML/trocr-base-printed")
model = VisionEncoderDecoderModel.from_pretrained("SalML/trocr-base-printed")
pixel_values = processor(images=cell_pil_img, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_text
def super_res(pil_img):
# requires opencv-contrib-python installed without the opencv-python
sr = dnn_superres.DnnSuperResImpl_create()
image = PIL_to_cv(pil_img)
model_path = "./LapSRN_x8.pb"
model_name = model_path.split('/')[1].split('_')[0].lower()
model_scale = int(model_path.split('/')[1].split('_')[1].split('.')[0][1])
sr.readModel(model_path)
sr.setModel(model_name, model_scale)
final_img = sr.upsample(image)
final_img = cv_to_PIL(final_img)
return final_img
def sharpen_image(pil_img):
img = PIL_to_cv(pil_img)
sharpen_kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
# sharpen_kernel = np.array([[0, -1, 0],
# [-1, 5,-1],
# [0, -1, 0]])
sharpen = cv2.filter2D(img, -1, sharpen_kernel)
pil_img = cv_to_PIL(sharpen)
return pil_img
def preprocess_magic(pil_img):
cv_img = PIL_to_cv(pil_img)
grayscale_image = cv2.cvtColor(cv_img, cv2.COLOR_BGR2GRAY)
_, binary_image = cv2.threshold(grayscale_image, 0, 255, cv2.THRESH_OTSU)
count_white = np.sum(binary_image > 0)
count_black = np.sum(binary_image == 0)
if count_black > count_white:
binary_image = 255 - binary_image
black_text_white_background_image = binary_image
return cv_to_PIL(black_text_white_background_image)
### main code:
for td_sample in os.listdir('D:/Jupyter/Multi-Type-TD-TSR/TD_samples/'):
image = Image.open("D:/Jupyter/Multi-Type-TD-TSR/TD_samples/"+td_sample).convert("RGB")
model, image, probas, bboxes_scaled = TDTSR.table_detector(image, THRESHOLD_PROBA=0.6)
TDTSR.plot_results_detection(c1, model, image, probas, bboxes_scaled)
cropped_img_list = TDTSR.plot_table_detection(c2, model, image, probas, bboxes_scaled)
for unpadded_table in cropped_img_list:
# table : pil_img
table = TDTSR.add_margin(unpadded_table)
model, image, probas, bboxes_scaled = TDTSR.table_struct_recog(table, THRESHOLD_PROBA=0.6)
# The try, except block of code below plots table header row and simple rows
try:
rows, cols = TDTSR.plot_structure(c3, model, image, probas, bboxes_scaled, class_to_show=0)
rows, cols = TDTSR.sort_table_featuresv2(rows, cols)
# headers, rows, cols are ordered dictionaries with 5th element value of tuple being pil_img
rows, cols = TDTSR.individual_table_featuresv2(table, rows, cols)
# TDTSR.plot_table_features(c1, header, row_header, rows, cols)
except Exception as printableException:
st.write(td_sample, ' terminated with exception:', printableException)
# master_row = TDTSR.master_row_set(header, row_header, rows, cols)
master_row = rows
# cells_img = TDTSR.object_to_cells(master_row, cols)
cells_img = TDTSR.object_to_cellsv2(master_row, cols)
headers = []
cells_list = []
# st.write(cells_img)
for n, kv in enumerate(cells_img.items()):
k, row_images = kv
if n == 0:
for idx, header in enumerate(row_images):
# plt.imshow(header)
# c2.pyplot()
# c2.write(pytess(header))
############################
SR_img = super_res(header)
# # w, h = SR_img.size
# # SR_img = SR_img.crop((0 ,0 ,w, h-60))
# plt.imshow(SR_img)
# c3.pyplot()
# c3.write(pytess(SR_img))
header_text = pytess(SR_img)
if header_text == '':
header_text = 'empty_col'+str(idx)
headers.append(header_text)
else:
for cells in row_images:
# plt.imshow(cells)
# c2.pyplot()
# c2.write(pytess(cells))
##############################
SR_img = super_res(cells)
# # w, h = SR_img.size
# # SR_img = SR_img.crop((0 ,0 ,w, h-60))
# plt.imshow(SR_img)
# c3.pyplot()
# c3.write(pytess(SR_img))
cells_list.append(pytess(SR_img))
df = pd.DataFrame("", index=range(0, len(master_row)), columns=headers)
cell_idx = 0
for nrows in range(len(master_row)-1):
for ncols in range(len(cols)):
df.iat[nrows, ncols] = cells_list[cell_idx]
cell_idx += 1
c3.dataframe(df)
# break