File size: 7,159 Bytes
8f68280
120a3c2
8f68280
120a3c2
8f68280
 
120a3c2
 
 
 
 
 
 
 
 
 
81cf2fa
f7f5be8
 
 
8f68280
 
 
120a3c2
8f68280
 
 
 
 
 
30474d6
 
120a3c2
 
 
30474d6
120a3c2
 
 
 
 
 
 
81cf2fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f68280
 
 
 
120a3c2
8f68280
120a3c2
 
81cf2fa
8f68280
 
 
 
 
 
 
 
 
 
120a3c2
8f68280
f7f5be8
120a3c2
81cf2fa
f7f5be8
 
8f68280
 
120a3c2
8f68280
 
 
120a3c2
f7f5be8
120a3c2
 
81cf2fa
 
 
 
 
 
 
 
 
 
 
 
 
 
8f68280
120a3c2
 
 
 
f7f5be8
8f68280
f7f5be8
 
 
 
 
 
 
8f68280
 
 
 
 
 
 
 
 
 
 
 
81cf2fa
 
 
 
 
 
 
8f68280
 
 
 
 
798b219
8f68280
 
 
 
 
 
 
 
798b219
8f68280
 
 
 
21e0a1c
 
8f68280
 
21e0a1c
81cf2fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f68280
 
 
81cf2fa
 
f7f5be8
 
81cf2fa
8f68280
 
f7f5be8
8f68280
 
f7f5be8
 
81cf2fa
8f68280
 
f7f5be8
 
 
8f68280
81cf2fa
8f68280
 
81cf2fa
8f68280
 
 
f7f5be8
8f68280
 
 
 
 
 
 
0baea79
b9e7cf7
798b219
c8765af
8f68280
 
21e0a1c
f7f5be8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from io import BytesIO

import string
import gradio as gr
import requests
from utils import Endpoint


def encode_image(image):
    buffered = BytesIO()
    image.save(buffered, format="JPEG")
    buffered.seek(0)

    return buffered


def query_chat_api(
    image, prompt, decoding_method, temperature, len_penalty, repetition_penalty
):

    url = endpoint.url

    headers = {"User-Agent": "BLIP-2 HuggingFace Space"}

    data = {
        "prompt": prompt,
        "use_nucleus_sampling": decoding_method == "Nucleus sampling",
        "temperature": temperature,
        "length_penalty": len_penalty,
        "repetition_penalty": repetition_penalty,
    }

    image = encode_image(image)
    files = {"image": image}

    response = requests.post(url, data=data, files=files, headers=headers)

    if response.status_code == 200:
        return response.json()
    else:
        return "Error: " + response.text


def query_caption_api(
    image, decoding_method, temperature, len_penalty, repetition_penalty
):

    url = endpoint.url
    # replace /generate with /caption
    url = url.replace("/generate", "/caption")

    headers = {"User-Agent": "BLIP-2 HuggingFace Space"}

    data = {
        "use_nucleus_sampling": decoding_method == "Nucleus sampling",
        "temperature": temperature,
        "length_penalty": len_penalty,
        "repetition_penalty": repetition_penalty,
    }

    image = encode_image(image)
    files = {"image": image}

    response = requests.post(url, data=data, files=files, headers=headers)

    if response.status_code == 200:
        return response.json()
    else:
        return "Error: " + response.text


def postprocess_output(output):
    # if last character is not a punctuation, add a full stop
    if not output[0][-1] in string.punctuation:
        output[0] += "."

    return output


def inference_chat(
    image,
    text_input,
    decoding_method,
    temperature,
    length_penalty,
    repetition_penalty,
    history=[],
):
    text_input = text_input
    history.append(text_input)

    prompt = " ".join(history)
    print(prompt)

    output = query_chat_api(
        image, prompt, decoding_method, temperature, length_penalty, repetition_penalty
    )
    output = postprocess_output(output)
    history += output

    chat = [
        (history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)
    ]  # convert to tuples of list

    return {chatbot: chat, state: history}


def inference_caption(
    image,
    decoding_method,
    temperature,
    length_penalty,
    repetition_penalty,
):
    output = query_caption_api(
        image, decoding_method, temperature, length_penalty, repetition_penalty
    )

    return output[0]


title = """<h1 align="center">BLIP-2</h1>"""
description = """Gradio demo for BLIP-2, a multimodal chatbot from Salesforce Research. To use it, simply upload your image, or click one of the examples to load them. Please visit our <a href='https://github.com/salesforce/LAVIS/tree/main/projects/blip2' target='_blank'>project webpage</a>.</p> 
<p> <strong>Disclaimer</strong>: This is a research prototype and is not intended for production use. No data including but not restricted to text and images is collected. </p>"""
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.12086' target='_blank'>BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models</a>"

endpoint = Endpoint()

examples = [
    ["house.png", "How could someone get out of the house?"],
    # [
    #     "sunset.png",
    #     "Write a romantic message that goes along this photo.",
    # ],
]

with gr.Blocks() as iface:
    state = gr.State([])

    gr.Markdown(title)
    gr.Markdown(description)
    gr.Markdown(article)
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="pil")

            with gr.Row():
                sampling = gr.Radio(
                    choices=["Beam search", "Nucleus sampling"],
                    value="Beam search",
                    label="Text Decoding Method",
                    interactive=True,
                )

                temperature = gr.Slider(
                    minimum=0.5,
                    maximum=1.0,
                    value=0.8,
                    interactive=True,
                    label="Temperature (set to 0 for greedy decoding with nucleus sampling)",
                )

                len_penalty = gr.Slider(
                    minimum=-2.0,
                    maximum=2.0,
                    value=1.0,
                    step=0.5,
                    interactive=True,
                    label="Length Penalty (larger value encourages longer sequence with beam search)",
                )

                rep_penalty = gr.Slider(
                    minimum=1.0,
                    maximum=5.0,
                    value=1.5,
                    step=0.5,
                    interactive=True,
                    label="Repeat Penalty (larger value prevents repetition)",
                )

            with gr.Row():
                caption_output = gr.Textbox(lines=2, label="Caption Output")
                caption_button = gr.Button(
                    value="Caption it!", interactive=True, variant="primary"
                )
                caption_button.click(
                    inference_caption,
                    [
                        image_input,
                        sampling,
                        temperature,
                        len_penalty,
                        rep_penalty,
                    ],
                    [caption_output],
                )

        with gr.Column():
            chat_input = gr.Textbox(lines=2, label="Chat Input")

            with gr.Row():
                chatbot = gr.Chatbot()
                image_input.change(lambda: (None, "", "", []), [], [chatbot, chat_input, caption_output, state])

            with gr.Row():

                clear_button = gr.Button(value="Clear", interactive=True)
                clear_button.click(
                    lambda: ("", None, [], []),
                    [],
                    [chat_input, image_input, chatbot, state],
                )

                submit_button = gr.Button(
                    value="Submit", interactive=True, variant="primary"
                )
                submit_button.click(
                    inference_chat,
                    [
                        image_input,
                        chat_input,
                        sampling,
                        temperature,
                        len_penalty,
                        rep_penalty,
                        state,
                    ],
                    [chatbot, state],
                )

    examples = gr.Examples(
        examples=examples,
        inputs=[image_input, chat_input, sampling, temperature, len_penalty, rep_penalty, state],
        outputs=[chatbot, state],
        run_on_click=True,
        fn = inference_chat,
    )

iface.queue(concurrency_count=1, api_open=False, max_size=10)
iface.launch(enable_queue=True)