Spaces:
Runtime error
Runtime error
# Copyright 2022 Google Brain and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch | |
import warnings | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from ..configuration_utils import ConfigMixin, register_to_config | |
from ..utils import BaseOutput | |
from .scheduling_utils import SchedulerMixin, SchedulerOutput | |
class SdeVeOutput(BaseOutput): | |
""" | |
Output class for the ScoreSdeVeScheduler's step function output. | |
Args: | |
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the | |
denoising loop. | |
prev_sample_mean (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
Mean averaged `prev_sample`. Same as `prev_sample`, only mean-averaged over previous timesteps. | |
""" | |
prev_sample: torch.FloatTensor | |
prev_sample_mean: torch.FloatTensor | |
class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin): | |
""" | |
The variance exploding stochastic differential equation (SDE) scheduler. | |
For more information, see the original paper: https://arxiv.org/abs/2011.13456 | |
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` | |
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. | |
[`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and | |
[`~ConfigMixin.from_config`] functios. | |
Args: | |
snr (`float`): | |
coefficient weighting the step from the model_output sample (from the network) to the random noise. | |
sigma_min (`float`): | |
initial noise scale for sigma sequence in sampling procedure. The minimum sigma should mirror the | |
distribution of the data. | |
sigma_max (`float`): maximum value used for the range of continuous timesteps passed into the model. | |
sampling_eps (`float`): the end value of sampling, where timesteps decrease progessively from 1 to | |
epsilon. | |
correct_steps (`int`): number of correction steps performed on a produced sample. | |
tensor_format (`str`): "np" or "pt" for the expected format of samples passed to the Scheduler. | |
""" | |
def __init__( | |
self, | |
num_train_timesteps: int = 2000, | |
snr: float = 0.15, | |
sigma_min: float = 0.01, | |
sigma_max: float = 1348.0, | |
sampling_eps: float = 1e-5, | |
correct_steps: int = 1, | |
tensor_format: str = "pt", | |
): | |
# setable values | |
self.timesteps = None | |
self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps) | |
self.tensor_format = tensor_format | |
self.set_format(tensor_format=tensor_format) | |
def set_timesteps(self, num_inference_steps: int, sampling_eps: float = None): | |
""" | |
Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference. | |
Args: | |
num_inference_steps (`int`): | |
the number of diffusion steps used when generating samples with a pre-trained model. | |
sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation). | |
""" | |
sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps | |
tensor_format = getattr(self, "tensor_format", "pt") | |
if tensor_format == "np": | |
self.timesteps = np.linspace(1, sampling_eps, num_inference_steps) | |
elif tensor_format == "pt": | |
self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps) | |
else: | |
raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.") | |
def set_sigmas( | |
self, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None, sampling_eps: float = None | |
): | |
""" | |
Sets the noise scales used for the diffusion chain. Supporting function to be run before inference. | |
The sigmas control the weight of the `drift` and `diffusion` components of sample update. | |
Args: | |
num_inference_steps (`int`): | |
the number of diffusion steps used when generating samples with a pre-trained model. | |
sigma_min (`float`, optional): | |
initial noise scale value (overrides value given at Scheduler instantiation). | |
sigma_max (`float`, optional): final noise scale value (overrides value given at Scheduler instantiation). | |
sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation). | |
""" | |
sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min | |
sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max | |
sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps | |
if self.timesteps is None: | |
self.set_timesteps(num_inference_steps, sampling_eps) | |
tensor_format = getattr(self, "tensor_format", "pt") | |
if tensor_format == "np": | |
self.discrete_sigmas = np.exp(np.linspace(np.log(sigma_min), np.log(sigma_max), num_inference_steps)) | |
self.sigmas = np.array([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) | |
elif tensor_format == "pt": | |
self.discrete_sigmas = torch.exp(torch.linspace(np.log(sigma_min), np.log(sigma_max), num_inference_steps)) | |
self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) | |
else: | |
raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.") | |
def get_adjacent_sigma(self, timesteps, t): | |
tensor_format = getattr(self, "tensor_format", "pt") | |
if tensor_format == "np": | |
return np.where(timesteps == 0, np.zeros_like(t), self.discrete_sigmas[timesteps - 1]) | |
elif tensor_format == "pt": | |
return torch.where( | |
timesteps == 0, | |
torch.zeros_like(t.to(timesteps.device)), | |
self.discrete_sigmas[timesteps - 1].to(timesteps.device), | |
) | |
raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.") | |
def set_seed(self, seed): | |
warnings.warn( | |
"The method `set_seed` is deprecated and will be removed in version `0.4.0`. Please consider passing a" | |
" generator instead.", | |
DeprecationWarning, | |
) | |
tensor_format = getattr(self, "tensor_format", "pt") | |
if tensor_format == "np": | |
np.random.seed(seed) | |
elif tensor_format == "pt": | |
torch.manual_seed(seed) | |
else: | |
raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.") | |
def step_pred( | |
self, | |
model_output: Union[torch.FloatTensor, np.ndarray], | |
timestep: int, | |
sample: Union[torch.FloatTensor, np.ndarray], | |
generator: Optional[torch.Generator] = None, | |
return_dict: bool = True, | |
**kwargs, | |
) -> Union[SdeVeOutput, Tuple]: | |
""" | |
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion | |
process from the learned model outputs (most often the predicted noise). | |
Args: | |
model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. | |
timestep (`int`): current discrete timestep in the diffusion chain. | |
sample (`torch.FloatTensor` or `np.ndarray`): | |
current instance of sample being created by diffusion process. | |
generator: random number generator. | |
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class | |
Returns: | |
[`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] if | |
`return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. | |
""" | |
if "seed" in kwargs and kwargs["seed"] is not None: | |
self.set_seed(kwargs["seed"]) | |
if self.timesteps is None: | |
raise ValueError( | |
"`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" | |
) | |
timestep = timestep * torch.ones( | |
sample.shape[0], device=sample.device | |
) # torch.repeat_interleave(timestep, sample.shape[0]) | |
timesteps = (timestep * (len(self.timesteps) - 1)).long() | |
# mps requires indices to be in the same device, so we use cpu as is the default with cuda | |
timesteps = timesteps.to(self.discrete_sigmas.device) | |
sigma = self.discrete_sigmas[timesteps].to(sample.device) | |
adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep).to(sample.device) | |
drift = self.zeros_like(sample) | |
diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5 | |
# equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) | |
# also equation 47 shows the analog from SDE models to ancestral sampling methods | |
drift = drift - diffusion[:, None, None, None] ** 2 * model_output | |
# equation 6: sample noise for the diffusion term of | |
noise = self.randn_like(sample, generator=generator) | |
prev_sample_mean = sample - drift # subtract because `dt` is a small negative timestep | |
# TODO is the variable diffusion the correct scaling term for the noise? | |
prev_sample = prev_sample_mean + diffusion[:, None, None, None] * noise # add impact of diffusion field g | |
if not return_dict: | |
return (prev_sample, prev_sample_mean) | |
return SdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean) | |
def step_correct( | |
self, | |
model_output: Union[torch.FloatTensor, np.ndarray], | |
sample: Union[torch.FloatTensor, np.ndarray], | |
generator: Optional[torch.Generator] = None, | |
return_dict: bool = True, | |
**kwargs, | |
) -> Union[SchedulerOutput, Tuple]: | |
""" | |
Correct the predicted sample based on the output model_output of the network. This is often run repeatedly | |
after making the prediction for the previous timestep. | |
Args: | |
model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. | |
sample (`torch.FloatTensor` or `np.ndarray`): | |
current instance of sample being created by diffusion process. | |
generator: random number generator. | |
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class | |
Returns: | |
[`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] if | |
`return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. | |
""" | |
if "seed" in kwargs and kwargs["seed"] is not None: | |
self.set_seed(kwargs["seed"]) | |
if self.timesteps is None: | |
raise ValueError( | |
"`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" | |
) | |
# For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" | |
# sample noise for correction | |
noise = self.randn_like(sample, generator=generator) | |
# compute step size from the model_output, the noise, and the snr | |
grad_norm = self.norm(model_output) | |
noise_norm = self.norm(noise) | |
step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 | |
step_size = step_size * torch.ones(sample.shape[0]).to(sample.device) | |
# self.repeat_scalar(step_size, sample.shape[0]) | |
# compute corrected sample: model_output term and noise term | |
prev_sample_mean = sample + step_size[:, None, None, None] * model_output | |
prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5)[:, None, None, None] * noise | |
if not return_dict: | |
return (prev_sample,) | |
return SchedulerOutput(prev_sample=prev_sample) | |
def __len__(self): | |
return self.config.num_train_timesteps | |