Spaces:
Runtime error
Runtime error
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from ..configuration_utils import ConfigMixin, register_to_config | |
from ..modeling_utils import ModelMixin | |
from ..utils import BaseOutput | |
from .embeddings import TimestepEmbedding, Timesteps | |
from .unet_blocks import UNetMidBlock2DCrossAttn, get_down_block, get_up_block | |
class UNet2DConditionOutput(BaseOutput): | |
""" | |
Args: | |
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model. | |
""" | |
sample: torch.FloatTensor | |
class UNet2DConditionModel(ModelMixin, ConfigMixin): | |
r""" | |
UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep | |
and returns sample shaped output. | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library | |
implements for all the model (such as downloading or saving, etc.) | |
Parameters: | |
sample_size (`int`, *optional*): The size of the input sample. | |
in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample. | |
out_channels (`int`, *optional*, defaults to 4): The number of channels in the output. | |
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample. | |
flip_sin_to_cos (`bool`, *optional*, defaults to `False`): | |
Whether to flip the sin to cos in the time embedding. | |
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. | |
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): | |
The tuple of downsample blocks to use. | |
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`): | |
The tuple of upsample blocks to use. | |
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): | |
The tuple of output channels for each block. | |
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. | |
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution. | |
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block. | |
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. | |
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization. | |
cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features. | |
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads. | |
""" | |
def __init__( | |
self, | |
sample_size: Optional[int] = None, | |
in_channels: int = 4, | |
out_channels: int = 4, | |
center_input_sample: bool = False, | |
flip_sin_to_cos: bool = True, | |
freq_shift: int = 0, | |
down_block_types: Tuple[str] = ( | |
"CrossAttnDownBlock2D", | |
"CrossAttnDownBlock2D", | |
"CrossAttnDownBlock2D", | |
"DownBlock2D", | |
), | |
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), | |
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
layers_per_block: int = 2, | |
downsample_padding: int = 1, | |
mid_block_scale_factor: float = 1, | |
act_fn: str = "silu", | |
norm_num_groups: int = 32, | |
norm_eps: float = 1e-5, | |
cross_attention_dim: int = 1280, | |
attention_head_dim: int = 8, | |
): | |
super().__init__() | |
self.sample_size = sample_size | |
time_embed_dim = block_out_channels[0] * 4 | |
# input | |
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)) | |
# time | |
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) | |
timestep_input_dim = block_out_channels[0] | |
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) | |
self.down_blocks = nn.ModuleList([]) | |
self.mid_block = None | |
self.up_blocks = nn.ModuleList([]) | |
# down | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=layers_per_block, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
temb_channels=time_embed_dim, | |
add_downsample=not is_final_block, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=attention_head_dim, | |
downsample_padding=downsample_padding, | |
) | |
self.down_blocks.append(down_block) | |
# mid | |
self.mid_block = UNetMidBlock2DCrossAttn( | |
in_channels=block_out_channels[-1], | |
temb_channels=time_embed_dim, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
output_scale_factor=mid_block_scale_factor, | |
resnet_time_scale_shift="default", | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=attention_head_dim, | |
resnet_groups=norm_num_groups, | |
) | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
is_final_block = i == len(block_out_channels) - 1 | |
up_block = get_up_block( | |
up_block_type, | |
num_layers=layers_per_block + 1, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
prev_output_channel=prev_output_channel, | |
temb_channels=time_embed_dim, | |
add_upsample=not is_final_block, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=attention_head_dim, | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps) | |
self.conv_act = nn.SiLU() | |
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) | |
def set_attention_slice(self, slice_size): | |
if slice_size is not None and self.config.attention_head_dim % slice_size != 0: | |
raise ValueError( | |
f"Make sure slice_size {slice_size} is a divisor of " | |
f"the number of heads used in cross_attention {self.config.attention_head_dim}" | |
) | |
if slice_size is not None and slice_size > self.config.attention_head_dim: | |
raise ValueError( | |
f"Chunk_size {slice_size} has to be smaller or equal to " | |
f"the number of heads used in cross_attention {self.config.attention_head_dim}" | |
) | |
for block in self.down_blocks: | |
if hasattr(block, "attentions") and block.attentions is not None: | |
block.set_attention_slice(slice_size) | |
self.mid_block.set_attention_slice(slice_size) | |
for block in self.up_blocks: | |
if hasattr(block, "attentions") and block.attentions is not None: | |
block.set_attention_slice(slice_size) | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
encoder_hidden_states: torch.Tensor, | |
return_dict: bool = True, | |
) -> Union[UNet2DConditionOutput, Tuple]: | |
"""r | |
Args: | |
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor | |
timestep (`torch.FloatTensor` or `float` or `int): (batch) timesteps | |
encoder_hidden_states (`torch.FloatTensor`): (batch, channel, height, width) encoder hidden states | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: | |
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When | |
returning a tuple, the first element is the sample tensor. | |
""" | |
# 0. center input if necessary | |
if self.config.center_input_sample: | |
sample = 2 * sample - 1.0 | |
# 1. time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device) | |
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: | |
timesteps = timesteps.to(dtype=torch.float16) | |
timesteps = timesteps[None].to(device=sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timesteps = timesteps.expand(sample.shape[0]) | |
t_emb = self.time_proj(timesteps) | |
# print(t_emb.dtype) | |
t_emb = t_emb.to(sample.dtype).to(sample.device) | |
emb = self.time_embedding(t_emb) | |
# 2. pre-process | |
sample = self.conv_in(sample) | |
# 3. down | |
down_block_res_samples = (sample,) | |
for downsample_block in self.down_blocks: | |
if hasattr(downsample_block, "attentions") and downsample_block.attentions is not None: | |
# print(sample.dtype, emb.dtype, encoder_hidden_states.dtype) | |
sample, res_samples = downsample_block( | |
hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states | |
) | |
else: | |
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
down_block_res_samples += res_samples | |
# 4. mid | |
sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states) | |
# 5. up | |
for upsample_block in self.up_blocks: | |
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
if hasattr(upsample_block, "attentions") and upsample_block.attentions is not None: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
encoder_hidden_states=encoder_hidden_states, | |
) | |
else: | |
sample = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples) | |
# 6. post-process | |
# make sure hidden states is in float32 | |
# when running in half-precision | |
sample = self.conv_norm_out(sample).type(sample.dtype) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
if not return_dict: | |
return (sample,) | |
return UNet2DConditionOutput(sample=sample) | |