Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. | |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" ConfigMixinuration base class and utilities.""" | |
import functools | |
import inspect | |
import json | |
import os | |
import re | |
from collections import OrderedDict | |
from typing import Any, Dict, Tuple, Union | |
from huggingface_hub import hf_hub_download | |
from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError | |
from requests import HTTPError | |
from . import __version__ | |
from .utils import DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, logging | |
logger = logging.get_logger(__name__) | |
_re_configuration_file = re.compile(r"config\.(.*)\.json") | |
class ConfigMixin: | |
r""" | |
Base class for all configuration classes. Stores all configuration parameters under `self.config` Also handles all | |
methods for loading/downloading/saving classes inheriting from [`ConfigMixin`] with | |
- [`~ConfigMixin.from_config`] | |
- [`~ConfigMixin.save_config`] | |
Class attributes: | |
- **config_name** (`str`) -- A filename under which the config should stored when calling | |
[`~ConfigMixin.save_config`] (should be overridden by parent class). | |
- **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be | |
overridden by parent class). | |
""" | |
config_name = None | |
ignore_for_config = [] | |
def register_to_config(self, **kwargs): | |
if self.config_name is None: | |
raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`") | |
kwargs["_class_name"] = self.__class__.__name__ | |
kwargs["_diffusers_version"] = __version__ | |
for key, value in kwargs.items(): | |
try: | |
setattr(self, key, value) | |
except AttributeError as err: | |
logger.error(f"Can't set {key} with value {value} for {self}") | |
raise err | |
if not hasattr(self, "_internal_dict"): | |
internal_dict = kwargs | |
else: | |
previous_dict = dict(self._internal_dict) | |
internal_dict = {**self._internal_dict, **kwargs} | |
logger.debug(f"Updating config from {previous_dict} to {internal_dict}") | |
self._internal_dict = FrozenDict(internal_dict) | |
def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs): | |
""" | |
Save a configuration object to the directory `save_directory`, so that it can be re-loaded using the | |
[`~ConfigMixin.from_config`] class method. | |
Args: | |
save_directory (`str` or `os.PathLike`): | |
Directory where the configuration JSON file will be saved (will be created if it does not exist). | |
""" | |
if os.path.isfile(save_directory): | |
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file") | |
os.makedirs(save_directory, exist_ok=True) | |
# If we save using the predefined names, we can load using `from_config` | |
output_config_file = os.path.join(save_directory, self.config_name) | |
self.to_json_file(output_config_file) | |
logger.info(f"ConfigMixinuration saved in {output_config_file}") | |
def from_config(cls, pretrained_model_name_or_path: Union[str, os.PathLike], return_unused_kwargs=False, **kwargs): | |
r""" | |
Instantiate a Python class from a pre-defined JSON-file. | |
Parameters: | |
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): | |
Can be either: | |
- A string, the *model id* of a model repo on huggingface.co. Valid model ids should have an | |
organization name, like `google/ddpm-celebahq-256`. | |
- A path to a *directory* containing model weights saved using [`~ConfigMixin.save_config`], e.g., | |
`./my_model_directory/`. | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory in which a downloaded pretrained model configuration should be cached if the | |
standard cache should not be used. | |
ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`): | |
Whether or not to raise an error if some of the weights from the checkpoint do not have the same size | |
as the weights of the model (if for instance, you are instantiating a model with 10 labels from a | |
checkpoint with 3 labels). | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
resume_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to delete incompletely received files. Will attempt to resume the download if such a | |
file exists. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
output_loading_info(`bool`, *optional*, defaults to `False`): | |
Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. | |
local_files_only(`bool`, *optional*, defaults to `False`): | |
Whether or not to only look at local files (i.e., do not try to download the model). | |
use_auth_token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated | |
when running `transformers-cli login` (stored in `~/.huggingface`). | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
identifier allowed by git. | |
mirror (`str`, *optional*): | |
Mirror source to accelerate downloads in China. If you are from China and have an accessibility | |
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety. | |
Please refer to the mirror site for more information. | |
<Tip> | |
Passing `use_auth_token=True`` is required when you want to use a private model. | |
</Tip> | |
<Tip> | |
Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to | |
use this method in a firewalled environment. | |
</Tip> | |
""" | |
config_dict = cls.get_config_dict(pretrained_model_name_or_path=pretrained_model_name_or_path, **kwargs) | |
init_dict, unused_kwargs = cls.extract_init_dict(config_dict, **kwargs) | |
model = cls(**init_dict) | |
if return_unused_kwargs: | |
return model, unused_kwargs | |
else: | |
return model | |
def get_config_dict( | |
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs | |
) -> Tuple[Dict[str, Any], Dict[str, Any]]: | |
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) | |
force_download = kwargs.pop("force_download", False) | |
resume_download = kwargs.pop("resume_download", False) | |
proxies = kwargs.pop("proxies", None) | |
use_auth_token = kwargs.pop("use_auth_token", None) | |
local_files_only = kwargs.pop("local_files_only", False) | |
revision = kwargs.pop("revision", None) | |
subfolder = kwargs.pop("subfolder", None) | |
user_agent = {"file_type": "config"} | |
pretrained_model_name_or_path = str(pretrained_model_name_or_path) | |
if cls.config_name is None: | |
raise ValueError( | |
"`self.config_name` is not defined. Note that one should not load a config from " | |
"`ConfigMixin`. Please make sure to define `config_name` in a class inheriting from `ConfigMixin`" | |
) | |
if os.path.isfile(pretrained_model_name_or_path): | |
config_file = pretrained_model_name_or_path | |
elif os.path.isdir(pretrained_model_name_or_path): | |
if os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)): | |
# Load from a PyTorch checkpoint | |
config_file = os.path.join(pretrained_model_name_or_path, cls.config_name) | |
elif subfolder is not None and os.path.isfile( | |
os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name) | |
): | |
config_file = os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name) | |
else: | |
raise EnvironmentError( | |
f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}." | |
) | |
else: | |
try: | |
# Load from URL or cache if already cached | |
config_file = hf_hub_download( | |
pretrained_model_name_or_path, | |
filename=cls.config_name, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
resume_download=resume_download, | |
local_files_only=local_files_only, | |
use_auth_token=use_auth_token, | |
user_agent=user_agent, | |
subfolder=subfolder, | |
revision=revision, | |
) | |
except RepositoryNotFoundError: | |
raise EnvironmentError( | |
f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier" | |
" listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a" | |
" token having permission to this repo with `use_auth_token` or log in with `huggingface-cli" | |
" login` and pass `use_auth_token=True`." | |
) | |
except RevisionNotFoundError: | |
raise EnvironmentError( | |
f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for" | |
" this model name. Check the model page at" | |
f" 'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." | |
) | |
except EntryNotFoundError: | |
raise EnvironmentError( | |
f"{pretrained_model_name_or_path} does not appear to have a file named {cls.config_name}." | |
) | |
except HTTPError as err: | |
raise EnvironmentError( | |
"There was a specific connection error when trying to load" | |
f" {pretrained_model_name_or_path}:\n{err}" | |
) | |
except ValueError: | |
raise EnvironmentError( | |
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" | |
f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" | |
f" directory containing a {cls.config_name} file.\nCheckout your internet connection or see how to" | |
" run the library in offline mode at" | |
" 'https://huggingface.co/docs/diffusers/installation#offline-mode'." | |
) | |
except EnvironmentError: | |
raise EnvironmentError( | |
f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from " | |
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. " | |
f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " | |
f"containing a {cls.config_name} file" | |
) | |
try: | |
# Load config dict | |
config_dict = cls._dict_from_json_file(config_file) | |
except (json.JSONDecodeError, UnicodeDecodeError): | |
raise EnvironmentError(f"It looks like the config file at '{config_file}' is not a valid JSON file.") | |
return config_dict | |
def extract_init_dict(cls, config_dict, **kwargs): | |
expected_keys = set(dict(inspect.signature(cls.__init__).parameters).keys()) | |
expected_keys.remove("self") | |
# remove general kwargs if present in dict | |
if "kwargs" in expected_keys: | |
expected_keys.remove("kwargs") | |
# remove keys to be ignored | |
if len(cls.ignore_for_config) > 0: | |
expected_keys = expected_keys - set(cls.ignore_for_config) | |
init_dict = {} | |
for key in expected_keys: | |
if key in kwargs: | |
# overwrite key | |
init_dict[key] = kwargs.pop(key) | |
elif key in config_dict: | |
# use value from config dict | |
init_dict[key] = config_dict.pop(key) | |
unused_kwargs = config_dict.update(kwargs) | |
passed_keys = set(init_dict.keys()) | |
if len(expected_keys - passed_keys) > 0: | |
logger.warning( | |
f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values." | |
) | |
return init_dict, unused_kwargs | |
def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]): | |
with open(json_file, "r", encoding="utf-8") as reader: | |
text = reader.read() | |
return json.loads(text) | |
def __repr__(self): | |
return f"{self.__class__.__name__} {self.to_json_string()}" | |
def config(self) -> Dict[str, Any]: | |
return self._internal_dict | |
def to_json_string(self) -> str: | |
""" | |
Serializes this instance to a JSON string. | |
Returns: | |
`str`: String containing all the attributes that make up this configuration instance in JSON format. | |
""" | |
config_dict = self._internal_dict if hasattr(self, "_internal_dict") else {} | |
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n" | |
def to_json_file(self, json_file_path: Union[str, os.PathLike]): | |
""" | |
Save this instance to a JSON file. | |
Args: | |
json_file_path (`str` or `os.PathLike`): | |
Path to the JSON file in which this configuration instance's parameters will be saved. | |
""" | |
with open(json_file_path, "w", encoding="utf-8") as writer: | |
writer.write(self.to_json_string()) | |
class FrozenDict(OrderedDict): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
for key, value in self.items(): | |
setattr(self, key, value) | |
self.__frozen = True | |
def __delitem__(self, *args, **kwargs): | |
raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.") | |
def setdefault(self, *args, **kwargs): | |
raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.") | |
def pop(self, *args, **kwargs): | |
raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.") | |
def update(self, *args, **kwargs): | |
raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.") | |
def __setattr__(self, name, value): | |
if hasattr(self, "__frozen") and self.__frozen: | |
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.") | |
super().__setattr__(name, value) | |
def __setitem__(self, name, value): | |
if hasattr(self, "__frozen") and self.__frozen: | |
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.") | |
super().__setitem__(name, value) | |
def register_to_config(init): | |
r""" | |
Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are | |
automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that | |
shouldn't be registered in the config, use the `ignore_for_config` class variable | |
Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init! | |
""" | |
def inner_init(self, *args, **kwargs): | |
# Ignore private kwargs in the init. | |
init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")} | |
init(self, *args, **init_kwargs) | |
if not isinstance(self, ConfigMixin): | |
raise RuntimeError( | |
f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does " | |
"not inherit from `ConfigMixin`." | |
) | |
ignore = getattr(self, "ignore_for_config", []) | |
# Get positional arguments aligned with kwargs | |
new_kwargs = {} | |
signature = inspect.signature(init) | |
parameters = { | |
name: p.default for i, (name, p) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore | |
} | |
for arg, name in zip(args, parameters.keys()): | |
new_kwargs[name] = arg | |
# Then add all kwargs | |
new_kwargs.update( | |
{ | |
k: init_kwargs.get(k, default) | |
for k, default in parameters.items() | |
if k not in ignore and k not in new_kwargs | |
} | |
) | |
getattr(self, "register_to_config")(**new_kwargs) | |
return inner_init | |