Spaces:
Running
Running
File size: 9,468 Bytes
aada8de f5303bc aada8de f5303bc aada8de f5303bc aada8de 8fab3a5 c29a860 aada8de 409ae36 35d42fa aada8de 409ae36 90f7215 8fab3a5 5f6be9e 90f7215 409ae36 90f7215 409ae36 90f7215 409ae36 90f7215 409ae36 f5303bc 8d950ab aada8de 409ae36 5f6be9e f5303bc aada8de f5303bc a47646c f5303bc a47646c f5303bc 5f6be9e a47646c 5f6be9e a47646c aada8de f5303bc 5f6be9e aada8de f5303bc 89d6f25 aada8de f5303bc 409ae36 f5303bc 4b38e69 5f6be9e aada8de 8fab3a5 5f6be9e 8fab3a5 26602a7 f5303bc 26602a7 409ae36 f5303bc 409ae36 76f9c73 f5303bc 409ae36 76f9c73 f5303bc 409ae36 aada8de 35d42fa aada8de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import gradio as gr
import ipdb
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
EVAL_COLS,
EVAL_TYPES,
ModelInfoColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_model_info_df, get_merged_df
from src.submission.submit import add_new_eval
from src.utils import norm_sNavie, pivot_df, get_grouped_dfs, pivot_existed_df, rename_metrics, format_df
# import ipdb
def restart_space():
API.restart_space(repo_id=REPO_ID)
# ## Space initialisation
# try:
# print(EVAL_REQUESTS_PATH)
# snapshot_download(
# repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
# token=TOKEN
# )
# except Exception:
# restart_space()
# try:
# print(EVAL_RESULTS_PATH)
# snapshot_download(
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
# token=TOKEN
# )
# except Exception:
# restart_space()
# # LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
# df = pd.read_csv('LOTSAv2_EvalBenchmark(Long).csv')
# # Step 2: Pivot the DataFrame
# LEADERBOARD_DF = df.pivot_table(index='model',
# columns='dataset',
# values='eval_metrics/MAE[0.5]',
# aggfunc='first')
# LEADERBOARD_DF.drop(columns=['ALL'], inplace=True)
#
# # Reset the index if you want the model column to be part of the DataFrame
# LEADERBOARD_DF.reset_index(inplace=True)
# # Step 3: noramlize the values
# # ipdb.set_trace()
# LEADERBOARD_DF = norm_sNavie(LEADERBOARD_DF)
#
# # LEADERBOARD_DF['Average'] = LEADERBOARD_DF.mean(axis=1)
# # LEADERBOARD_DF.insert(1, 'Average', LEADERBOARD_DF.pop('Average'))
# # LEADERBOARD_DF = LEADERBOARD_DF.sort_values(by=['Average'], ascending=True)
# print(f"The leaderboard is {LEADERBOARD_DF}")
# print(f'Columns: ', LEADERBOARD_DF.columns)
# LEADERBOARD_DF = pd.read_csv('pivoted_df.csv')
# domain_df = pivot_df('results/grouped_results_by_domain.csv', tab_name='domain')
# print(f'Domain dataframe is {domain_df}')
# freq_df = pivot_df('results/grouped_results_by_frequency.csv', tab_name='frequency')
# print(f'Freq dataframe is {freq_df}')
# term_length_df = pivot_df('results/grouped_results_by_term_length.csv', tab_name='term_length')
# print(f'Term length dataframe is {term_length_df}')
# variate_type_df = pivot_df('results/grouped_results_by_univariate.csv', tab_name='univariate')
# print(f'Variate type dataframe is {variate_type_df}')
# model_info_df = get_model_info_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH)
grouped_dfs = get_grouped_dfs()
domain_df, freq_df, term_length_df, variate_type_df, overall_df = grouped_dfs['domain'], grouped_dfs['frequency'], grouped_dfs['term_length'], grouped_dfs['univariate'], grouped_dfs['overall']
overall_df = rename_metrics(overall_df)
overall_df = format_df(overall_df)
overall_df = overall_df.sort_values(by=['Rank'])
domain_df = pivot_existed_df(domain_df, tab_name='domain')
print(f'Domain dataframe is {domain_df}')
freq_df = pivot_existed_df(freq_df, tab_name='frequency')
print(f'Freq dataframe is {freq_df}')
term_length_df = pivot_existed_df(term_length_df, tab_name='term_length')
print(f'Term length dataframe is {term_length_df}')
variate_type_df = pivot_existed_df(variate_type_df, tab_name='univariate')
print(f'Variate type dataframe is {variate_type_df}')
model_info_df = get_model_info_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH)
# (
# finished_eval_queue_df,
# running_eval_queue_df,
# pending_eval_queue_df,
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(ori_dataframe, model_info_df, sort_val: str|None = None):
if ori_dataframe is None or ori_dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
model_info_col_list = [c.name for c in fields(ModelInfoColumn) if c.displayed_by_default if c.name not in ['#Params (B)', 'available_on_hub', 'hub', 'Model sha','Hub License']]
col2type_dict = {c.name: c.type for c in fields(ModelInfoColumn)}
default_selection_list = list(ori_dataframe.columns) + model_info_col_list
# print('default_selection_list: ', default_selection_list)
# ipdb.set_trace()
# default_selection_list = [col for col in default_selection_list if col not in ['#Params (B)', 'available_on_hub', 'hub', 'Model sha','Hub License']]
merged_df = get_merged_df(ori_dataframe, model_info_df)
new_cols = ['T'] + [col for col in merged_df.columns if col != 'T']
merged_df = merged_df[new_cols]
print('Merged df: ', merged_df)
if sort_val:
if sort_val in merged_df.columns:
merged_df = merged_df.sort_values(by=[sort_val])
else:
print(f'Warning: cannot sort by {sort_val}')
# get the data type
datatype_list = [col2type_dict[col] if col in col2type_dict else 'number' for col in merged_df.columns]
print('datatype_list: ', datatype_list)
# print('merged_df.column: ', merged_df.columns)
# ipdb.set_trace()
return Leaderboard(
value=merged_df,
datatype=datatype_list,
select_columns=SelectColumns(
default_selection=default_selection_list,
# default_selection=[c.name for c in fields(ModelInfoColumn) if
# c.displayed_by_default and c.name not in ['params', 'available_on_hub', 'hub',
# 'Model sha', 'Hub License']],
# default_selection=list(dataframe.columns),
cant_deselect=[c.name for c in fields(ModelInfoColumn) if c.never_hidden],
label="Select Columns to Display:",
# How to uncheck??
),
hide_columns=[c.name for c in fields(ModelInfoColumn) if c.hidden],
search_columns=['model'],
# hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
# filter_columns=[
# ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
# ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
# ColumnFilter(
# AutoEvalColumn.params.name,
# type="slider",
# min=0.01,
# max=500,
# label="Select the number of parameters (B)",
# ),
# ColumnFilter(
# AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=False
# ),
# ],
filter_columns=[
ColumnFilter(ModelInfoColumn.model_type.name, type="checkboxgroup", label="Model types"),
],
# bool_checkboxgroup_label="",
column_widths=[40, 150] + [150 for _ in range(len(merged_df.columns)-2)],
interactive=False,
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem('π
Overall', elem_id="llm-benchmark-tab-table", id=5):
leaderboard = init_leaderboard(overall_df, model_info_df, sort_val='MAPE')
print(f'FINAL Overall LEADERBOARD {overall_df}')
with gr.TabItem("π
By Domain", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(domain_df, model_info_df)
print(f"FINAL Domain LEADERBOARD 1 {domain_df}")
with gr.TabItem("π
By Frequency", elem_id="llm-benchmark-tab-table", id=1):
leaderboard = init_leaderboard(freq_df, model_info_df)
print(f"FINAL Frequency LEADERBOARD 1 {freq_df}")
with gr.TabItem("π
By Term Length", elem_id="llm-benchmark-tab-table", id=2):
leaderboard = init_leaderboard(term_length_df, model_info_df)
print(f"FINAL term length LEADERBOARD 1 {term_length_df}")
with gr.TabItem("π
By Variate Type", elem_id="llm-benchmark-tab-table", id=3):
leaderboard = init_leaderboard(variate_type_df, model_info_df)
print(f"FINAL LEADERBOARD 1 {variate_type_df}")
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=4):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch() |