Spaces:
Running
Running
unify freq
Browse files- src/utils.py +41 -5
src/utils.py
CHANGED
@@ -56,6 +56,29 @@ def format_df(df):
|
|
56 |
# make sure the data type is float
|
57 |
df.iloc[:, 1:] = df.iloc[:, 1:].astype(float)
|
58 |
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
def pivot_existed_df(df, tab_name):
|
60 |
df = df.reset_index()
|
61 |
if tab_name == 'univariate':
|
@@ -128,6 +151,8 @@ def get_grouped_dfs(root_dir='results', ds_properties='results/dataset_propertie
|
|
128 |
else:
|
129 |
df.loc[df['dataset'] == dataset, key] = dataset_properties_dict[dataset][key]
|
130 |
|
|
|
|
|
131 |
# standardize by seasonal naive
|
132 |
df = standardize_df(df)
|
133 |
metric_columns = ['eval_metrics/MSE[mean]', 'eval_metrics/MSE[0.5]', 'eval_metrics/MAE[0.5]',
|
@@ -179,6 +204,13 @@ def standardize_df(df):
|
|
179 |
# 6. Create a new df with standardized results
|
180 |
original_df = df.copy()
|
181 |
# 1. Get all the unique dataset names
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
dataset_names = df['dataset'].unique()
|
183 |
# 2. For each dataset name, get all the unique frequencies and term lengths
|
184 |
for dataset in dataset_names:
|
@@ -191,11 +223,15 @@ def standardize_df(df):
|
|
191 |
(df['dataset'] == dataset) & (df['frequency'] == frequency) & (df['term_length'] == term_length) & (
|
192 |
df['model'] == 'Seasonal_Naive')]
|
193 |
for metric in metric_columns:
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
|
|
|
|
|
|
|
|
199 |
# df[(df['dataset'] == 'bitbrains_fast_storage') & (df['model'] == 'seasonal_naive')]
|
200 |
return df
|
201 |
|
|
|
56 |
# make sure the data type is float
|
57 |
df.iloc[:, 1:] = df.iloc[:, 1:].astype(float)
|
58 |
return df
|
59 |
+
|
60 |
+
def unify_freq(df):
|
61 |
+
# Remove all numeric characters from the 'frequency' column
|
62 |
+
df['frequency'] = df['frequency'].str.replace(r'\d+', '', regex=True)
|
63 |
+
# Remove everything after '-' if present
|
64 |
+
df['frequency'] = df['frequency'].str.split('-').str[0]
|
65 |
+
|
66 |
+
# Define the frequency conversion dictionary
|
67 |
+
freq_conversion = {
|
68 |
+
'T': 'Minutely',
|
69 |
+
'H': 'Hourly',
|
70 |
+
'D': 'Daily',
|
71 |
+
'W': 'Weekly',
|
72 |
+
'M': 'Monthly',
|
73 |
+
'Q': 'Quarterly',
|
74 |
+
'Y': 'Yearly',
|
75 |
+
'A': 'Yearly',
|
76 |
+
'S': 'Secondly'
|
77 |
+
}
|
78 |
+
|
79 |
+
# Map the cleaned 'frequency' values using the dictionary
|
80 |
+
df['frequency'] = df['frequency'].replace(freq_conversion)
|
81 |
+
return df
|
82 |
def pivot_existed_df(df, tab_name):
|
83 |
df = df.reset_index()
|
84 |
if tab_name == 'univariate':
|
|
|
151 |
else:
|
152 |
df.loc[df['dataset'] == dataset, key] = dataset_properties_dict[dataset][key]
|
153 |
|
154 |
+
# unify the frequency
|
155 |
+
df = unify_freq(df)
|
156 |
# standardize by seasonal naive
|
157 |
df = standardize_df(df)
|
158 |
metric_columns = ['eval_metrics/MSE[mean]', 'eval_metrics/MSE[0.5]', 'eval_metrics/MAE[0.5]',
|
|
|
204 |
# 6. Create a new df with standardized results
|
205 |
original_df = df.copy()
|
206 |
# 1. Get all the unique dataset names
|
207 |
+
dataset_corrections = {
|
208 |
+
"saugeenday": "saugeen",
|
209 |
+
"temperature_rain_with_missing": "temperature_rain",
|
210 |
+
"kdd_cup_2018_with_missing": "kdd_cup_2018",
|
211 |
+
"car_parts_with_missing": "car_parts",
|
212 |
+
}
|
213 |
+
df['dataset'] = df['dataset'].replace(dataset_corrections)
|
214 |
dataset_names = df['dataset'].unique()
|
215 |
# 2. For each dataset name, get all the unique frequencies and term lengths
|
216 |
for dataset in dataset_names:
|
|
|
223 |
(df['dataset'] == dataset) & (df['frequency'] == frequency) & (df['term_length'] == term_length) & (
|
224 |
df['model'] == 'Seasonal_Naive')]
|
225 |
for metric in metric_columns:
|
226 |
+
try:
|
227 |
+
# 5. For each model name, dataset name, frequency, and term length, divide the model results by the seasonal_naive results
|
228 |
+
df.loc[(df['dataset'] == dataset) & (df['frequency'] == frequency) & (
|
229 |
+
df['term_length'] == term_length), metric] = df[(df['dataset'] == dataset) & (
|
230 |
+
df['frequency'] == frequency) & (df['term_length'] == term_length)][metric] / \
|
231 |
+
seasonal_naive_results[metric].values[0]
|
232 |
+
except Exception:
|
233 |
+
print(f"Error: {dataset} {term_length} {frequency} {metric}")
|
234 |
+
ipdb.set_trace()
|
235 |
# df[(df['dataset'] == 'bitbrains_fast_storage') & (df['model'] == 'seasonal_naive')]
|
236 |
return df
|
237 |
|