Spaces:
Running
Running
from dataclasses import dataclass, make_dataclass | |
import pandas as pd | |
def fields(raw_class): | |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
# These classes are for user facing column names, | |
# to avoid having to change them all around the code | |
# when a modif is needed | |
class ColumnContent: | |
name: str | |
type: str | |
displayed_by_default: bool | |
hidden: bool = False | |
never_hidden: bool = False | |
## Leaderboard columns | |
auto_eval_column_dict = [] | |
# Init | |
auto_eval_column_dict.append( | |
["model", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)] | |
) | |
auto_eval_column_dict.append(["model_provider", ColumnContent, ColumnContent("LLM Provider", "markdown", True)]) | |
auto_eval_column_dict.append(["use_case_name", ColumnContent, ColumnContent("Use Case Name", "markdown", True)]) | |
auto_eval_column_dict.append(["use_case_type", ColumnContent, ColumnContent("Use Case Type", "markdown", False)]) | |
auto_eval_column_dict.append(["accuracy_method", ColumnContent, ColumnContent("Accuracy Method", "markdown", False)]) | |
# Accuracy metrics | |
auto_eval_column_dict.append(["accuracy_metric_average", ColumnContent, ColumnContent("Accuracy", "markdown", True)]) | |
auto_eval_column_dict.append( | |
[ | |
"accuracy_metric_instruction_following", | |
ColumnContent, | |
ColumnContent("Instruction Following", "markdown", True), | |
] | |
) | |
auto_eval_column_dict.append( | |
["accuracy_metric_completeness", ColumnContent, ColumnContent("Completeness", "markdown", True)] | |
) | |
auto_eval_column_dict.append( | |
["accuracy_metric_conciseness", ColumnContent, ColumnContent("Conciseness", "markdown", True)] | |
) | |
auto_eval_column_dict.append( | |
["accuracy_metric_factuality", ColumnContent, ColumnContent("Factuality", "markdown", True)] | |
) | |
# auto_eval_column_dict.append( | |
# ["use_case_flavor", ColumnContent, ColumnContent("Cost and Speed: Flavor", "markdown", False)] | |
# ) | |
auto_eval_column_dict.append(["latency", ColumnContent, ColumnContent("Response Time (Sec)", "markdown", True)]) | |
auto_eval_column_dict.append( | |
["mean_output_tokens", ColumnContent, ColumnContent("Mean Output Tokens", "markdown", True)] | |
) | |
auto_eval_column_dict.append(["cost_band", ColumnContent, ColumnContent("Cost Band", "markdown", True)]) | |
# We use make dataclass to dynamically fill the scores from Tasks | |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) | |
# Speed (Latency) & Cost metrics | |
cost_eval_column_dict = [] | |
# Init | |
cost_eval_column_dict.append( | |
["model", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)] | |
) | |
cost_eval_column_dict.append(["model_provider", ColumnContent, ColumnContent("LLM Provider", "markdown", True)]) | |
cost_eval_column_dict.append( | |
["use_case_flavor", ColumnContent, ColumnContent("Cost and Speed: Flavor", "markdown", True)] | |
) | |
cost_eval_column_dict.append(["latency", ColumnContent, ColumnContent("Response Time (Sec)", "markdown", True)]) | |
cost_eval_column_dict.append( | |
["mean_output_tokens", ColumnContent, ColumnContent("Mean Output Tokens", "markdown", True)] | |
) | |
cost_eval_column_dict.append(["cost_band", ColumnContent, ColumnContent("Cost Band", "markdown", True)]) | |
CostEvalColumn = make_dataclass("CostEvalColumn", cost_eval_column_dict, frozen=True) | |
# Trust & Safety metrics | |
ts_eval_column_dict = [] | |
# Init | |
ts_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)]) | |
ts_eval_column_dict.append(["model_provider", ColumnContent, ColumnContent("LLM Provider", "markdown", True)]) | |
ts_eval_column_dict.append(["ts", ColumnContent, ColumnContent("Trust & Safety", "markdown", True)]) | |
ts_eval_column_dict.append(["safety", ColumnContent, ColumnContent("Safety", "markdown", False)]) | |
ts_eval_column_dict.append(["privacy", ColumnContent, ColumnContent("Privacy", "markdown", False)]) | |
ts_eval_column_dict.append(["truthfulness", ColumnContent, ColumnContent("Truthfulness", "markdown", False)]) | |
ts_eval_column_dict.append(["crm_bias", ColumnContent, ColumnContent("CRM Bias", "markdown", False)]) | |
# ts_eval_column_dict.append(["bias_no_ci", ColumnContent, ColumnContent("Bias No CI", "markdown", True)]) | |
TSEvalColumn = make_dataclass("TSEvalColumn", ts_eval_column_dict, frozen=True) | |
# Column selection | |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] | |
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] | |
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] | |
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] | |
COST_COLS = [c.name for c in fields(CostEvalColumn) if not c.hidden] | |
COST_TYPES = [c.type for c in fields(CostEvalColumn) if not c.hidden] | |
TS_COLS = [c.name for c in fields(TSEvalColumn) if not c.hidden] | |
TS_TYPES = [c.type for c in fields(TSEvalColumn) if not c.hidden] | |
# BENCHMARK_COLS = [t.value.col_name for t in Tasks] | |
NUMERIC_INTERVALS = { | |
"?": pd.Interval(-1, 0, closed="right"), | |
"~1.5": pd.Interval(0, 2, closed="right"), | |
"~3": pd.Interval(2, 4, closed="right"), | |
"~7": pd.Interval(4, 9, closed="right"), | |
"~13": pd.Interval(9, 20, closed="right"), | |
"~35": pd.Interval(20, 45, closed="right"), | |
"~60": pd.Interval(45, 70, closed="right"), | |
"70+": pd.Interval(70, 10000, closed="right"), | |
} | |