Spaces:
Sleeping
Sleeping
import gradio as gr | |
import cv2 | |
import requests | |
import os | |
import numpy as np | |
from ultralytics import YOLO | |
file_urls = [ | |
'https://www.dropbox.com/s/b5g97xo901zb3ds/pothole_example.jpg?dl=1', | |
'https://www.dropbox.com/s/86uxlxxlm1iaexa/pothole_screenshot.png?dl=1', | |
'https://www.dropbox.com/s/7sjfwncffg8xej2/video_7.mp4?dl=1' | |
] | |
def download_file(url, save_name): | |
if not os.path.exists(save_name): | |
file = requests.get(url) | |
open(save_name, 'wb').write(file.content) | |
for i, url in enumerate(file_urls): | |
if 'mp4' in file_urls[i]: | |
download_file(file_urls[i], f"video.mp4") | |
else: | |
download_file(file_urls[i], f"image_{i}.jpg") | |
model = YOLO('best.pt') | |
path = [['image_0.jpg'], ['image_1.jpg']] | |
video_path = [['video.mp4']] | |
def save_annotation(image_path, results): | |
height, width, _ = cv2.imread(image_path).shape | |
annotation_txt = "" | |
for i, det in enumerate(results.boxes.xyxy): | |
# YOLO format: class x_center y_center width height | |
class_id = int(results.names[int(det[5])]) | |
x_center, y_center, bbox_width, bbox_height = det[0], det[1], det[2] - det[0], det[3] - det[1] | |
annotation_txt += f"{class_id} {x_center / width:.6f} {y_center / height:.6f} {bbox_width / width:.6f} {bbox_height / height:.6f}\n" | |
return annotation_txt | |
def show_preds_image(image_path): | |
image = cv2.imread(image_path) | |
outputs = model.predict(source=image_path) | |
results = outputs[0].cpu().numpy() | |
annotation_txt = save_annotation(image_path, results) | |
for i, det in enumerate(results.boxes.xyxy): | |
cv2.rectangle( | |
image, | |
(int(det[0]), int(det[1])), | |
(int(det[2]), int(det[3])), | |
color=(0, 0, 255), | |
thickness=2, | |
lineType=cv2.LINE_AA | |
) | |
# Save YOLO format annotation to a txt file | |
annotation_filename = f"annotation_{os.path.basename(image_path).split('.')[0]}.txt" | |
with open(annotation_filename, 'w') as f: | |
f.write(annotation_txt) | |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
inputs_image = [gr.components.Image(type="filepath", label="Input Image"),] | |
outputs_image = [gr.components.Image(type="numpy", label="Output Image"),] | |
interface_image = gr.Interface( | |
fn=show_preds_image, | |
inputs=inputs_image, | |
outputs=outputs_image, | |
title="Pothole detector", | |
examples=path, | |
cache_examples=False, | |
) | |
interface_image.launch(debug=True) | |