Spaces:
Sleeping
Sleeping
import gradio as gr | |
import groq | |
import io | |
import numpy as np | |
import soundfile as sf | |
import pyttsx3 # Text-to-Speech engine | |
# Define the API key directly in the code | |
API_KEY = "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" # Replace this with your actual Groq API key | |
def transcribe_audio(audio): | |
if audio is None: | |
return "" | |
client = groq.Client(api_key=API_KEY) | |
# Convert audio to the format expected by the model | |
audio_data = audio[1] # Get the numpy array from the tuple | |
buffer = io.BytesIO() | |
sf.write(buffer, audio_data, audio[0], format='wav') | |
buffer.seek(0) | |
try: | |
# Use Distil-Whisper English powered by Groq for transcription | |
completion = client.audio.transcriptions.create( | |
model="distil-whisper-large-v3-en", | |
file=("audio.wav", buffer), | |
response_format="text" | |
) | |
return completion | |
except Exception as e: | |
return f"Error in transcription: {str(e)}" | |
def generate_response(transcription): | |
if not transcription: | |
return "No transcription available. Please try speaking again." | |
client = groq.Client(api_key=API_KEY) | |
try: | |
# Use Llama 3 70B powered by Groq for text generation | |
completion = client.chat.completions.create( | |
model="llama3-70b-8192", | |
messages=[{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": transcription}], | |
) | |
return completion.choices[0].message.content | |
except Exception as e: | |
return f"Error in response generation: {str(e)}" | |
def text_to_speech(response_text): | |
# Initialize the pyttsx3 engine for text-to-speech | |
engine = pyttsx3.init() | |
audio_buffer = io.BytesIO() | |
engine.save_to_file(response_text, audio_buffer) | |
engine.runAndWait() | |
audio_buffer.seek(0) | |
return audio_buffer | |
def process_audio(audio): | |
transcription = transcribe_audio(audio) | |
response = generate_response(transcription) | |
audio_response = text_to_speech(response) | |
return transcription, response, audio_response | |
custom_css = """ | |
.gradio-container { | |
background-color: #f5f5f5; | |
} | |
.gr-button-primary { | |
background-color: #f55036 !important; | |
border-color: #f55036 !important; | |
} | |
.gr-button-secondary { | |
color: #f55036 !important; | |
border-color: #f55036 !important; | |
} | |
#groq-badge { | |
position: fixed; | |
bottom: 20px; | |
right: 20px; | |
z-index: 1000; | |
} | |
""" | |
with gr.Blocks(theme=gr.themes.Default()) as demo: | |
gr.Markdown("# ποΈ LLAVA Voice-Powered AI Assistant") | |
with gr.Row(): | |
audio_input = gr.Audio(label="Speak!", type="numpy", streaming=True) # Enable real-time streaming | |
with gr.Row(): | |
transcription_output = gr.Textbox(label="Transcription", interactive=False) | |
response_output = gr.Textbox(label="AI Assistant Response", interactive=False) | |
audio_output = gr.Audio(label="AI Response Audio", interactive=False) | |
submit_button = gr.Button("Process", variant="primary") | |
# Add the Groq badge | |
gr.HTML(""" | |
<div id="groq-badge"> | |
<div style="color: #f55036; font-weight: bold;">POWERED BY LLAVA</div> | |
</div> | |
""") | |
submit_button.click( | |
process_audio, | |
inputs=[audio_input], | |
outputs=[transcription_output, response_output, audio_output] | |
) | |
gr.Markdown(""" | |
## How to use this app: | |
1. Click on the microphone icon and speak your message (or upload an audio file). Supported audio files include mp3, mp4, mpeg, mpga, m4a, wav, and webm file types. | |
2. The system will automatically transcribe your speech, generate a response, and play it as audio. | |
3. The transcription and AI assistant response will appear in the respective text boxes. | |
""") | |
demo.launch() | |