Spaces:
Sleeping
Sleeping
Added buttons
#2
by
osanchik
- opened
- pages/📷 CritiSense.py +78 -24
pages/📷 CritiSense.py
CHANGED
@@ -16,20 +16,51 @@ def clean(text):
|
|
16 |
text = text.translate(str.maketrans('', '', string.punctuation))
|
17 |
return text
|
18 |
|
19 |
-
# Загрузка весов модели
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
st.title("CritiSense")
|
34 |
st.subheader("Movie Review Sentiment Analyzer")
|
35 |
st.write("CritiSense is a powerful app that analyzes the sentiment of movie reviews.")
|
@@ -37,21 +68,44 @@ st.write("Whether you want to know if a review is positive or negative, CritiSen
|
|
37 |
st.write("Just enter the review, and our app will provide you with instant sentiment analysis.")
|
38 |
st.write("Make informed decisions about movies with CritiSense!")
|
39 |
user_review = st.text_input("Enter your review:", "")
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
st.markdown("<p style='color: green;'>Sentiment: Positive</p>", unsafe_allow_html=True)
|
53 |
else:
|
54 |
st.markdown("<p style='color: red;'>Sentiment: Negative</p>", unsafe_allow_html=True)
|
55 |
-
st.markdown(f"Execution Time: {
|
56 |
-
execution_time_container.text(f"Execution Time: {
|
57 |
|
|
|
16 |
text = text.translate(str.maketrans('', '', string.punctuation))
|
17 |
return text
|
18 |
|
19 |
+
# Загрузка весов модели и векторизатора
|
20 |
+
def load_model_ml() : # return model
|
21 |
+
model_filename = 'model_weights.pkl'
|
22 |
+
with open(model_filename, 'rb') as file:
|
23 |
+
model = pickle.load(file)
|
24 |
|
25 |
+
vectorizer = CountVectorizer()
|
26 |
+
vectorizer_filename = 'vectorizer_weights.pkl'
|
27 |
+
with open(vectorizer_filename, 'rb') as file:
|
28 |
+
vectorizer = pickle.load(file)
|
29 |
+
|
30 |
+
return model, vectorizer
|
31 |
|
32 |
+
def predict_ml(model, vectorizer, user_review) :
|
33 |
+
user_review_clean = clean(user_review)
|
34 |
+
user_features = vectorizer.transform([user_review_clean])
|
35 |
+
start_ml=time.time()
|
36 |
+
prediction = model.predict(user_features)
|
37 |
+
end_ml=time.time()
|
38 |
+
st.write("Review:", user_review)
|
39 |
+
ml_time=end_ml-start_ml
|
40 |
|
41 |
+
return prediction, ml_time
|
42 |
+
|
43 |
+
#Placeholder for RNN
|
44 |
+
def load_model_rnn() : # return model
|
45 |
+
return # model
|
46 |
+
|
47 |
+
#Placeholder for RNN
|
48 |
+
def predict_rnn(model, user_review) :
|
49 |
+
prediction = 1
|
50 |
+
time = 0
|
51 |
+
return prediction, time
|
52 |
|
53 |
+
#Placeholder for BERT
|
54 |
+
def load_model_bert() : # return model
|
55 |
+
return # model
|
56 |
+
|
57 |
+
#Placeholder for BERT
|
58 |
+
def predict_bert(model, user_review) :
|
59 |
+
prediction = 1
|
60 |
+
time = 0
|
61 |
+
return prediction, time
|
62 |
+
|
63 |
+
# Само приложение
|
64 |
st.title("CritiSense")
|
65 |
st.subheader("Movie Review Sentiment Analyzer")
|
66 |
st.write("CritiSense is a powerful app that analyzes the sentiment of movie reviews.")
|
|
|
68 |
st.write("Just enter the review, and our app will provide you with instant sentiment analysis.")
|
69 |
st.write("Make informed decisions about movies with CritiSense!")
|
70 |
user_review = st.text_input("Enter your review:", "")
|
71 |
+
|
72 |
+
# Создаем пустой контейнер для отображения времени выполнения
|
73 |
+
execution_time_container = st.empty()
|
74 |
+
if st.button("Analyze Sentiment using ML"):
|
75 |
+
ml_model, ml_vectorizer = load_model_ml()
|
76 |
+
ml_prediction, ml_time = predict_ml(ml_model, ml_vectorizer, user_review)
|
77 |
+
|
78 |
+
if ml_prediction == 1:
|
79 |
+
st.markdown("<p style='color: green;'>Sentiment: Positive</p>", unsafe_allow_html=True)
|
80 |
+
else:
|
81 |
+
st.markdown("<p style='color: red;'>Sentiment: Negative</p>", unsafe_allow_html=True)
|
82 |
+
|
83 |
+
st.markdown(f"Execution Time: {ml_time:.5f} seconds")
|
84 |
+
execution_time_container.text(f"Execution Time: {ml_time:.5f} seconds")
|
85 |
+
|
86 |
+
st.divider()
|
87 |
+
|
88 |
+
if st.button("Analyze Sentiment using RNN"):
|
89 |
+
rnn_model = load_model_rnn()
|
90 |
+
rnn_prediction, rnn_time = predict_rnn(rnn_model, user_review)
|
91 |
+
|
92 |
+
if rnn_prediction == 1:
|
93 |
+
st.markdown("<p style='color: green;'>Sentiment: Positive</p>", unsafe_allow_html=True)
|
94 |
+
else:
|
95 |
+
st.markdown("<p style='color: red;'>Sentiment: Negative</p>", unsafe_allow_html=True)
|
96 |
+
st.markdown(f"Execution Time: {rnn_time:.5f} seconds")
|
97 |
+
execution_time_container.text(f"Execution Time: {rnn_time:.5f} seconds")
|
98 |
+
|
99 |
+
st.divider()
|
100 |
+
|
101 |
+
if st.button("Analyze Sentiment using Bert"):
|
102 |
+
bert_model = load_model_bert()
|
103 |
+
bert_prediction, bert_time = predict_bert(bert_model, user_review)
|
104 |
+
|
105 |
+
if bert_prediction == 1:
|
106 |
st.markdown("<p style='color: green;'>Sentiment: Positive</p>", unsafe_allow_html=True)
|
107 |
else:
|
108 |
st.markdown("<p style='color: red;'>Sentiment: Negative</p>", unsafe_allow_html=True)
|
109 |
+
st.markdown(f"Execution Time: {bert_time:.5f} seconds")
|
110 |
+
execution_time_container.text(f"Execution Time: {bert_time:.5f} seconds")
|
111 |
|