File size: 5,387 Bytes
4b7893b
 
1caab63
 
 
 
ba25116
1caab63
 
 
 
 
 
 
1bc894f
1caab63
29eec6c
2b4e2ce
fe9f836
17dad20
1caab63
1bc894f
fe9f836
4b7893b
1caab63
 
15f0e8d
1caab63
 
4b7893b
1caab63
 
 
 
4cc5acb
1caab63
 
 
 
4cc5acb
1bc894f
 
4b7893b
 
29eec6c
fe9f836
 
29eec6c
1bc894f
1caab63
 
 
64aa216
 
 
 
1caab63
 
 
 
6450be1
 
 
 
1caab63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5817080
1caab63
2b4e2ce
1caab63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc894f
 
 
4b7893b
1bc894f
2b4e2ce
29eec6c
4b7893b
29eec6c
1bc894f
29eec6c
 
 
 
4b7893b
29eec6c
 
 
4b7893b
 
1caab63
 
 
 
 
 
 
 
1bc894f
4b7893b
1caab63
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import streamlit as st
import os
import asyncio
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_community.vectorstores import Chroma
from langchain_together import Together
from langchain_community.chat_message_histories import StreamlitChatMessageHistory
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.chat_history import BaseChatMessageHistory
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter

# Initialize the LLMs
llm = Together(
    model="mistralai/Mixtral-8x22B-Instruct-v0.1",
    temperature=0.2,
    top_k=12,
    max_tokens=22048,
    together_api_key=os.environ['pilotikval']
)

# Function to store chat history
store = {}

model_name = "BAAI/bge-base-en"
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity

embedding_function = HuggingFaceBgeEmbeddings(
    model_name=model_name,
    encode_kwargs=encode_kwargs
)

def get_session_history(session_id: str) -> BaseChatMessageHistory:
    if session_id not in store:
        store[session_id] = StreamlitChatMessageHistory(key=session_id)
    return store[session_id]

# Define the Streamlit app
def app():
    with st.sidebar:
        st.title("dochatter")
        option = st.selectbox(
            'Which retriever would you like to use?',
            ('General Medicine', 'RespiratoryFishman', 'RespiratoryMurray', 'MedMRCP2', 'OldMedicine')
        )

        # Define retrievers based on option
        persist_directory = {
            'General Medicine': "./oxfordmedbookdir/",
            'Respiratory1': "./respfishmandbcud/",
            'Respiratory2': "./respmurray/",
            'Med2.2': "./medmrcp2store/",
            'Med2.1': "./mrcpchromadb/"
        }.get(option, "./mrcpchromadb/")

        collection_name = {
            'General Medicine': "oxfordmed",
            'Respiratory1': "fishmannotescud",
            'Respiratory2': "respmurraynotes",
            'Med2.2': "medmrcp2notes",
            'Med2.1': "mrcppassmednotes"
        }.get(option, "mrcppassmednotes")

        vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name=collection_name)
        retriever = vectordb.as_retriever(search_kwargs={"k": 5})

    # Define the prompt templates
    contextualize_q_system_prompt = (
        "Given a chat history and the latest user question "
        "which might reference context in the chat history, "
        "formulate a standalone question which can be understood "
        "without the chat history. Do NOT answer the question, "
        "just reformulate it if needed and otherwise return it as is."
    )
    contextualize_q_prompt = ChatPromptTemplate.from_messages(
        [
            ("system", contextualize_q_system_prompt),
            MessagesPlaceholder("chat_history"),
            ("human", "{input}"),
        ]
    )
    history_aware_retriever = create_history_aware_retriever(
        llm, retriever, contextualize_q_prompt
    )

    system_prompt = (
        "You are helping a doctor. Be as detailed and thorough as possible "
        "Use the following pieces of retrieved context to answer "
        "the question. If you don't know the answer, say that you "
        "don't know."
        "\n\n"
        "{context}"
    )
    qa_prompt = ChatPromptTemplate.from_messages(
        [
            ("system", system_prompt),
            MessagesPlaceholder("chat_history"),
            ("human", "{input}"),
        ]
    )
    question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
    rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)

    # Statefully manage chat history
    conversational_rag_chain = RunnableWithMessageHistory(
        rag_chain,
        get_session_history,
        input_messages_key="input",
        history_messages_key="chat_history",
        output_messages_key="answer",
    )

    # Session State
    if "messages" not in st.session_state.keys():
        st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]

    st.header("Hello Doc!")
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.write(message["content"])

    prompts2 = st.chat_input("Say something")

    if prompts2:
        st.session_state.messages.append({"role": "user", "content": prompts2})
        with st.chat_message("user"):
            st.write(prompts2)

    if st.session_state.messages[-1]["role"] != "assistant":
        with st.chat_message("assistant"):
            with st.spinner("Thinking..."):
                final_response = conversational_rag_chain.invoke(
                    {
                        "input": prompts2,
                    },
                    config={"configurable": {"session_id": "current_session"}}
                )
                st.write(final_response['answer'])
        st.session_state.messages.append({"role": "assistant", "content": final_response['answer']})

if __name__ == '__main__':
    app()