File size: 5,696 Bytes
2f8f51f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5257ec0
2f8f51f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5257ec0
2f8f51f
 
 
 
 
 
 
 
 
 
 
5257ec0
2f8f51f
 
 
 
 
5257ec0
 
2f8f51f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, TextIteratorStreamer
import torch
from threading import Thread
from huggingface_hub import Repository
import json

theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
    radius_size=gr.themes.sizes.radius_sm,
    font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)
os.environ["TOKENIZERS_PARALLELISM"] = "false"

# Load peft config for pre-trained checkpoint etc.
device = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "SebastianSchramm/Cerebras-GPT-111M-instruction"
if device == "cpu":
    model = AutoModelForCausalLM.from_pretrained(model_id)
else:
    model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)

prompt_template = "Below is an instruction that describes a task, paired with an input that provides further context.\n" \
                  "Write a response that appropriately completes the request.\n\n" \
                  "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"


def generate(instruction, input='', temperature=1.0, max_new_tokens=256, top_p=0.9, length_penalty=1.0):
    formatted_instruction = prompt_template.format(instruction=instruction, input=input)
    
    # make sure temperature top_p and length_penalty are floats
    temperature = float(temperature)
    top_p = float(top_p)
    length_penalty = float(length_penalty)
    
    # STREAMING BASED ON git+https://github.com/gante/transformers.git@streamer_iterator

    # streaming
    streamer = TextIteratorStreamer(tokenizer)
    model_inputs = tokenizer(formatted_instruction, return_tensors="pt", truncation=True, max_length=2048)
    # move to gpu
    model_inputs = {k: v.to(device) for k, v in model_inputs.items()}

    generate_kwargs = dict(
        top_p=top_p,
        top_k=0,
        temperature=temperature,
        do_sample=True,
        max_new_tokens=max_new_tokens,
        early_stopping=True,
        length_penalty=length_penalty,
        eos_token_id=tokenizer.eos_token_id,
        pad_token_id=tokenizer.eos_token_id,
    )
    t = Thread(target=model.generate, kwargs={**dict(model_inputs, streamer=streamer), **generate_kwargs})
    t.start()

    output = ""
    hidden_output = ""
    for new_text in streamer:
        # skip streaming until new text is available
        if len(hidden_output) <= len(formatted_instruction):
            hidden_output += new_text
            continue
        # replace eos token
        if tokenizer.eos_token in new_text:
            new_text = new_text.replace(tokenizer.eos_token, "")
        output += new_text
        yield output
    return output

examples = []

def process_example(args):
    for x in generate(args):
        pass
    return x

with gr.Blocks(theme=theme) as demo:
    with gr.Column():
        gr.Markdown(
            """<h1><center>Instruction-tuned Cerebras GPT 111M Language Model for Text</center></h1>
            <p>
            Link to model: [Cerebras-GPT-111M-instruction](SebastianSchramm/Cerebras-GPT-111M-instruction)
            </p>
      """
        )
        with gr.Row():
            with gr.Column(scale=3):
                instruction = gr.Textbox(placeholder="Instruction...", label="Instruction")
                input = gr.Textbox(placeholder="Input...", label="Input")
                output = gr.Textbox(
                    interactive=False,
                    lines=8,
                    label="Response",
                    placeholder="Response will be shown here...",
                )
                submit = gr.Button("Generate", variant="primary")
                gr.Examples(
                    examples=examples,
                    inputs=[instruction, input],
                    cache_examples=True,
                    fn=process_example,
                    outputs=[output],
                )

            with gr.Column(scale=1):
                temperature = gr.Slider(
                    label="Temperature",
                    value=1.0,
                    minimum=0.01,
                    maximum=1.0,
                    step=0.1,
                    interactive=True,
                    info="The higher more random",
                )
                max_new_tokens = gr.Slider(
                    label="Max new tokens",
                    value=256,
                    minimum=0,
                    maximum=2048,
                    step=5,
                    interactive=True,
                    info="The maximum numbers of new tokens",
                )
                top_p = gr.Slider(
                    label="Top p",
                    value=0.9,
                    minimum=0.01,
                    maximum=1,
                    step=0.05,
                    interactive=True,
                    info="probabilities that add up are kept",
                )
                length_penalty = gr.Slider(
                    label="Length penalty",
                    value=1.0,
                    minimum=-10.0,
                    maximum=10.0,
                    step=0.1,
                    interactive=True,
                    info="> 0.0 longer, < 0.0 shorter",
                )

    submit.click(generate, inputs=[instruction, input, temperature, max_new_tokens, top_p, length_penalty], outputs=[output])
    instruction.submit(
        generate, inputs=[instruction, input, temperature, max_new_tokens, top_p, length_penalty], outputs=[output]
    )

demo.queue(concurrency_count=1)
demo.launch(enable_queue=True)