Spaces:
Running
Running
File size: 11,412 Bytes
f4d5aab 4ebd212 8a052ba f4d5aab ee53ecb f4d5aab ee53ecb 35de67c f4d5aab 8a052ba f4d5aab 4ebd212 f4d5aab 4ebd212 8a052ba 4ebd212 8a052ba 35de67c 4ebd212 77dabd4 4ebd212 8a052ba 77dabd4 4ebd212 77dabd4 4ebd212 8a052ba 77dabd4 4ebd212 77dabd4 f4d5aab 4ebd212 8a052ba 4ebd212 8a052ba 4ebd212 8a052ba 4ebd212 8a052ba 4ebd212 f4d5aab 4ebd212 8a052ba f4d5aab 8a052ba f4d5aab 8a052ba 4ebd212 8a052ba 4ebd212 8a052ba 4ebd212 8a052ba 4ebd212 8a052ba 4ebd212 35de67c 8a052ba 4ebd212 8a052ba 35de67c 8a052ba 4ebd212 8a052ba 4ebd212 8a052ba 4ebd212 8a052ba 4ebd212 8a052ba 4ebd212 f4d5aab 4ebd212 8a052ba 4ebd212 8a052ba 4ebd212 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import streamlit as st
import torch
from transformers import AutoTokenizer
from semviqa.ser.qatc_model import QATCForQuestionAnswering
from semviqa.tvc.model import ClaimModelForClassification
from semviqa.ser.ser_eval import extract_evidence_tfidf_qatc
from semviqa.tvc.tvc_eval import classify_claim
import time
import io
# Load models with caching
@st.cache_resource()
def load_model(model_name, model_class, is_bc=False):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = model_class.from_pretrained(model_name, num_labels=3 if not is_bc else 2)
model.eval()
return tokenizer, model
# Set up page configuration
st.set_page_config(page_title="SemViQA Demo", layout="wide")
# Custom CSS cho header cố định và main container (chiều cao = viewport - 55px)
st.markdown("""
<style>
.header-container {
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 55px;
background-color: #fff;
z-index: 1000;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
display: flex;
align-items: center;
justify-content: space-between;
padding: 0 20px;
}
.header-title {
font-size: 14px;
font-weight: bold;
color: #4A90E2;
}
.header-nav {
margin: 0 20px;
}
.header-subtitle {
font-size: 12px;
color: #666;
text-align: right;
}
.main-container {
margin-top: 55px;
height: calc(100vh - 55px);
overflow-y: auto;
padding: 20px;
}
.stButton>button {
background-color: #4CAF50;
color: white;
font-size: 16px;
width: 100%;
border-radius: 8px;
padding: 10px;
}
.stTextArea textarea {
font-size: 16px;
min-height: 120px;
}
.result-box {
background-color: #f9f9f9;
padding: 20px;
border-radius: 10px;
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1);
margin-top: 20px;
}
.verdict {
font-size: 24px;
font-weight: bold;
margin: 0;
display: flex;
align-items: center;
}
.verdict-icon {
margin-right: 10px;
}
</style>
""", unsafe_allow_html=True)
# --- Fixed Header ---
# Sử dụng st.markdown để in ra phần header cố định bao gồm title, nav (radio) và subtitle
st.markdown("""
<div class='header-container'>
<div class='header-title'>SemViQA: Semantic Fact-Checking System for Vietnamese</div>
<div class='header-nav'>
""", unsafe_allow_html=True)
# Navigation: sử dụng st.radio để chuyển đổi các trang (hiển thị theo dạng ngang)
nav_option = st.radio("", ["Verify", "History", "About"], horizontal=True, key="nav")
st.markdown("""
</div>
<div class='header-subtitle'>Enter a claim and context to verify its accuracy</div>
</div>
""", unsafe_allow_html=True)
# --- Main Container ---
with st.container():
st.markdown("<div class='main-container'>", unsafe_allow_html=True)
# Sidebar: Global Settings (không thay đổi)
with st.sidebar.expander("⚙️ Settings", expanded=True):
tfidf_threshold = st.slider("TF-IDF Threshold", 0.0, 1.0, 0.5, 0.01)
length_ratio_threshold = st.slider("Length Ratio Threshold", 0.1, 1.0, 0.5, 0.01)
qatc_model_name = st.selectbox("QATC Model", [
"SemViQA/qatc-infoxlm-viwikifc",
"SemViQA/qatc-infoxlm-isedsc01",
"SemViQA/qatc-vimrc-viwikifc",
"SemViQA/qatc-vimrc-isedsc01"
])
bc_model_name = st.selectbox("Binary Classification Model", [
"SemViQA/bc-xlmr-viwikifc",
"SemViQA/bc-xlmr-isedsc01",
"SemViQA/bc-infoxlm-viwikifc",
"SemViQA/bc-infoxlm-isedsc01",
"SemViQA/bc-erniem-viwikifc",
"SemViQA/bc-erniem-isedsc01"
])
tc_model_name = st.selectbox("Three-Class Classification Model", [
"SemViQA/tc-xlmr-viwikifc",
"SemViQA/tc-xlmr-isedsc01",
"SemViQA/tc-infoxlm-viwikifc",
"SemViQA/tc-infoxlm-isedsc01",
"SemViQA/tc-erniem-viwikifc",
"SemViQA/tc-erniem-isedsc01"
])
show_details = st.checkbox("Show probability details", value=False)
# Khởi tạo lịch sử kiểm chứng và kết quả mới nhất
if 'history' not in st.session_state:
st.session_state.history = []
if 'latest_result' not in st.session_state:
st.session_state.latest_result = None
# Load các mô hình đã chọn
tokenizer_qatc, model_qatc = load_model(qatc_model_name, QATCForQuestionAnswering)
tokenizer_bc, model_bc = load_model(bc_model_name, ClaimModelForClassification, is_bc=True)
tokenizer_tc, model_tc = load_model(tc_model_name, ClaimModelForClassification)
# Icon cho kết quả
verdict_icons = {
"SUPPORTED": "✅",
"REFUTED": "❌",
"NEI": "⚠️"
}
# Hiển thị nội dung theo lựa chọn của navigation
if nav_option == "Verify":
st.subheader("Verify a Claim")
# Layout 2 cột: bên trái cho input, bên phải hiển thị kết quả
col_input, col_result = st.columns([2, 1])
with col_input:
claim = st.text_area("Enter Claim", "Vietnam is a country in Southeast Asia.")
context = st.text_area("Enter Context", "Vietnam is a country located in Southeast Asia, covering an area of over 331,000 km² with a population of more than 98 million people.")
verify_clicked = st.button("Verify", key="verify_button")
with col_result:
if verify_clicked:
with st.spinner("Loading and running verification..."):
# Hiển thị progress bar mô phỏng quá trình xử lý
progress_bar = st.progress(0)
for i in range(1, 101, 20):
time.sleep(0.1)
progress_bar.progress(i)
with torch.no_grad():
# Trích xuất bằng chứng và phân loại thông tin
evidence = extract_evidence_tfidf_qatc(
claim, context, model_qatc, tokenizer_qatc,
"cuda" if torch.cuda.is_available() else "cpu",
confidence_threshold=tfidf_threshold,
length_ratio_threshold=length_ratio_threshold
)
verdict = "NEI"
details = ""
prob3class, pred_tc = classify_claim(
claim, evidence, model_tc, tokenizer_tc,
"cuda" if torch.cuda.is_available() else "cpu"
)
if pred_tc != 0:
prob2class, pred_bc = classify_claim(
claim, evidence, model_bc, tokenizer_bc,
"cuda" if torch.cuda.is_available() else "cpu"
)
if pred_bc == 0:
verdict = "SUPPORTED"
elif prob2class > prob3class:
verdict = "REFUTED"
else:
verdict = ["NEI", "SUPPORTED", "REFUTED"][pred_tc]
if show_details:
details = f"<p><strong>3-Class Probability:</strong> {prob3class.item():.2f} - <strong>2-Class Probability:</strong> {prob2class.item():.2f}</p>"
# Lưu lịch sử và kết quả kiểm chứng mới nhất
st.session_state.history.append({
"claim": claim,
"evidence": evidence,
"verdict": verdict
})
st.session_state.latest_result = {
"claim": claim,
"evidence": evidence,
"verdict": verdict,
"details": details
}
if torch.cuda.is_available():
torch.cuda.empty_cache()
res = st.session_state.latest_result
st.markdown("<h3>Verification Result</h3>", unsafe_allow_html=True)
st.markdown(f"""
<div class='result-box'>
<p><strong>Claim:</strong> {res['claim']}</p>
<p><strong>Evidence:</strong> {res['evidence']}</p>
<p class='verdict'><span class='verdict-icon'>{verdict_icons.get(res['verdict'], '')}</span>{res['verdict']}</p>
{res['details']}
</div>
""", unsafe_allow_html=True)
result_text = f"Claim: {res['claim']}\nEvidence: {res['evidence']}\nVerdict: {res['verdict']}\nDetails: {res['details']}"
st.download_button("Download Result", data=result_text, file_name="verification_result.txt", mime="text/plain")
else:
st.info("No verification result yet.")
elif nav_option == "History":
st.subheader("Verification History")
if st.session_state.history:
for idx, record in enumerate(reversed(st.session_state.history), 1):
st.markdown(f"**{idx}. Claim:** {record['claim']} \n**Result:** {verdict_icons.get(record['verdict'], '')} {record['verdict']}")
else:
st.write("No verification history yet.")
elif nav_option == "About":
st.subheader("About")
st.markdown("""
<p align="center">
<a href="https://arxiv.org/abs/2503.00955">
<img src="https://img.shields.io/badge/arXiv-2411.00918-red?style=flat&label=arXiv">
</a>
<a href="https://huggingface.co/SemViQA">
<img src="https://img.shields.io/badge/Hugging%20Face-Model-yellow?style=flat">
</a>
<a href="https://pypi.org/project/SemViQA">
<img src="https://img.shields.io/pypi/v/SemViQA?color=blue&label=PyPI">
</a>
<a href="https://github.com/DAVID-NGUYEN-S16/SemViQA">
<img src="https://img.shields.io/github/stars/DAVID-NGUYEN-S16/SemViQA?style=social">
</a>
</p>
""", unsafe_allow_html=True)
st.markdown("""
**Description:**
SemViQA is a semantic QA system designed for fact-checking in Vietnamese.
It extracts evidence from the provided context and classifies the claim as **SUPPORTED**, **REFUTED**, or **NEI** (Not Enough Information) using state-of-the-art models.
""")
st.markdown("</div>", unsafe_allow_html=True)
|