File size: 11,412 Bytes
f4d5aab
 
 
 
 
 
 
4ebd212
8a052ba
f4d5aab
 
 
ee53ecb
f4d5aab
ee53ecb
35de67c
f4d5aab
 
8a052ba
f4d5aab
 
4ebd212
f4d5aab
 
4ebd212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a052ba
 
4ebd212
 
8a052ba
 
35de67c
4ebd212
 
 
 
 
 
 
77dabd4
4ebd212
8a052ba
 
77dabd4
4ebd212
 
 
 
 
77dabd4
 
4ebd212
 
 
8a052ba
77dabd4
 
 
4ebd212
77dabd4
 
f4d5aab
 
 
4ebd212
 
 
 
 
 
 
 
 
 
 
 
 
 
8a052ba
4ebd212
 
 
 
 
 
 
 
 
8a052ba
 
 
 
 
4ebd212
8a052ba
 
 
 
 
 
 
4ebd212
8a052ba
 
 
 
 
 
 
4ebd212
f4d5aab
4ebd212
8a052ba
 
 
 
f4d5aab
8a052ba
 
 
 
f4d5aab
8a052ba
 
 
 
 
 
4ebd212
 
 
 
 
8a052ba
 
 
4ebd212
 
 
 
 
 
 
 
 
 
 
 
 
8a052ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ebd212
8a052ba
 
 
 
 
 
 
 
 
 
 
 
 
 
4ebd212
8a052ba
4ebd212
35de67c
 
8a052ba
4ebd212
8a052ba
 
35de67c
 
8a052ba
4ebd212
8a052ba
4ebd212
8a052ba
4ebd212
 
8a052ba
 
4ebd212
8a052ba
4ebd212
f4d5aab
4ebd212
 
8a052ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ebd212
 
 
8a052ba
4ebd212
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import streamlit as st
import torch
from transformers import AutoTokenizer
from semviqa.ser.qatc_model import QATCForQuestionAnswering
from semviqa.tvc.model import ClaimModelForClassification
from semviqa.ser.ser_eval import extract_evidence_tfidf_qatc
from semviqa.tvc.tvc_eval import classify_claim
import time
import io

# Load models with caching
@st.cache_resource()
def load_model(model_name, model_class, is_bc=False):
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = model_class.from_pretrained(model_name, num_labels=3 if not is_bc else 2)
    model.eval()
    return tokenizer, model

# Set up page configuration
st.set_page_config(page_title="SemViQA Demo", layout="wide")

# Custom CSS cho header cố định và main container (chiều cao = viewport - 55px)
st.markdown("""
    <style>
        .header-container {
            position: fixed;
            top: 0;
            left: 0;
            width: 100%;
            height: 55px;
            background-color: #fff;
            z-index: 1000;
            box-shadow: 0 2px 4px rgba(0,0,0,0.1);
            display: flex;
            align-items: center;
            justify-content: space-between;
            padding: 0 20px;
        }
        .header-title {
            font-size: 14px;
            font-weight: bold;
            color: #4A90E2;
        }
        .header-nav {
            margin: 0 20px;
        }
        .header-subtitle {
            font-size: 12px;
            color: #666;
            text-align: right;
        }
        .main-container {
            margin-top: 55px;
            height: calc(100vh - 55px);
            overflow-y: auto;
            padding: 20px;
        }
        .stButton>button {
            background-color: #4CAF50;
            color: white;
            font-size: 16px;
            width: 100%;
            border-radius: 8px;
            padding: 10px;
        }
        .stTextArea textarea {
            font-size: 16px;
            min-height: 120px;
        }
        .result-box {
            background-color: #f9f9f9;
            padding: 20px;
            border-radius: 10px;
            box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1);
            margin-top: 20px;
        }
        .verdict {
            font-size: 24px;
            font-weight: bold;
            margin: 0;
            display: flex;
            align-items: center;
        }
        .verdict-icon {
            margin-right: 10px;
        }
    </style>
""", unsafe_allow_html=True)

# --- Fixed Header ---
# Sử dụng st.markdown để in ra phần header cố định bao gồm title, nav (radio) và subtitle
st.markdown("""
<div class='header-container'>
    <div class='header-title'>SemViQA: Semantic Fact-Checking System for Vietnamese</div>
    <div class='header-nav'>
""", unsafe_allow_html=True)
# Navigation: sử dụng st.radio để chuyển đổi các trang (hiển thị theo dạng ngang)
nav_option = st.radio("", ["Verify", "History", "About"], horizontal=True, key="nav")
st.markdown("""
    </div>
    <div class='header-subtitle'>Enter a claim and context to verify its accuracy</div>
</div>
""", unsafe_allow_html=True)

# --- Main Container ---
with st.container():
    st.markdown("<div class='main-container'>", unsafe_allow_html=True)
    
    # Sidebar: Global Settings (không thay đổi)
    with st.sidebar.expander("⚙️ Settings", expanded=True):
        tfidf_threshold = st.slider("TF-IDF Threshold", 0.0, 1.0, 0.5, 0.01)
        length_ratio_threshold = st.slider("Length Ratio Threshold", 0.1, 1.0, 0.5, 0.01)
        qatc_model_name = st.selectbox("QATC Model", [
            "SemViQA/qatc-infoxlm-viwikifc",
            "SemViQA/qatc-infoxlm-isedsc01",
            "SemViQA/qatc-vimrc-viwikifc",
            "SemViQA/qatc-vimrc-isedsc01"
        ])
        bc_model_name = st.selectbox("Binary Classification Model", [
            "SemViQA/bc-xlmr-viwikifc",
            "SemViQA/bc-xlmr-isedsc01",
            "SemViQA/bc-infoxlm-viwikifc",
            "SemViQA/bc-infoxlm-isedsc01",
            "SemViQA/bc-erniem-viwikifc",
            "SemViQA/bc-erniem-isedsc01"
        ])
        tc_model_name = st.selectbox("Three-Class Classification Model", [
            "SemViQA/tc-xlmr-viwikifc",
            "SemViQA/tc-xlmr-isedsc01",
            "SemViQA/tc-infoxlm-viwikifc",
            "SemViQA/tc-infoxlm-isedsc01",
            "SemViQA/tc-erniem-viwikifc",
            "SemViQA/tc-erniem-isedsc01"
        ])
        show_details = st.checkbox("Show probability details", value=False)

    # Khởi tạo lịch sử kiểm chứng và kết quả mới nhất
    if 'history' not in st.session_state:
        st.session_state.history = []
    if 'latest_result' not in st.session_state:
        st.session_state.latest_result = None

    # Load các mô hình đã chọn
    tokenizer_qatc, model_qatc = load_model(qatc_model_name, QATCForQuestionAnswering)
    tokenizer_bc, model_bc = load_model(bc_model_name, ClaimModelForClassification, is_bc=True)
    tokenizer_tc, model_tc = load_model(tc_model_name, ClaimModelForClassification)

    # Icon cho kết quả
    verdict_icons = {
        "SUPPORTED": "✅",
        "REFUTED": "❌",
        "NEI": "⚠️"
    }
    
    # Hiển thị nội dung theo lựa chọn của navigation
    if nav_option == "Verify":
        st.subheader("Verify a Claim")
        # Layout 2 cột: bên trái cho input, bên phải hiển thị kết quả
        col_input, col_result = st.columns([2, 1])
        
        with col_input:
            claim = st.text_area("Enter Claim", "Vietnam is a country in Southeast Asia.")
            context = st.text_area("Enter Context", "Vietnam is a country located in Southeast Asia, covering an area of over 331,000 km² with a population of more than 98 million people.")
            verify_clicked = st.button("Verify", key="verify_button")
        
        with col_result:
            if verify_clicked:
                with st.spinner("Loading and running verification..."):
                    # Hiển thị progress bar mô phỏng quá trình xử lý
                    progress_bar = st.progress(0)
                    for i in range(1, 101, 20):
                        time.sleep(0.1)
                        progress_bar.progress(i)
                    
                    with torch.no_grad():
                        # Trích xuất bằng chứng và phân loại thông tin
                        evidence = extract_evidence_tfidf_qatc(
                            claim, context, model_qatc, tokenizer_qatc,
                            "cuda" if torch.cuda.is_available() else "cpu",
                            confidence_threshold=tfidf_threshold,
                            length_ratio_threshold=length_ratio_threshold
                        )
                        verdict = "NEI"
                        details = ""
                        prob3class, pred_tc = classify_claim(
                            claim, evidence, model_tc, tokenizer_tc,
                            "cuda" if torch.cuda.is_available() else "cpu"
                        )
                        if pred_tc != 0:
                            prob2class, pred_bc = classify_claim(
                                claim, evidence, model_bc, tokenizer_bc,
                                "cuda" if torch.cuda.is_available() else "cpu"
                            )
                            if pred_bc == 0:
                                verdict = "SUPPORTED"
                            elif prob2class > prob3class:
                                verdict = "REFUTED"
                            else:
                                verdict = ["NEI", "SUPPORTED", "REFUTED"][pred_tc]
                            if show_details:
                                details = f"<p><strong>3-Class Probability:</strong> {prob3class.item():.2f} - <strong>2-Class Probability:</strong> {prob2class.item():.2f}</p>"
                        
                        # Lưu lịch sử và kết quả kiểm chứng mới nhất
                        st.session_state.history.append({
                            "claim": claim,
                            "evidence": evidence,
                            "verdict": verdict
                        })
                        st.session_state.latest_result = {
                            "claim": claim,
                            "evidence": evidence,
                            "verdict": verdict,
                            "details": details
                        }
                        
                        if torch.cuda.is_available():
                            torch.cuda.empty_cache()
                
                res = st.session_state.latest_result
                st.markdown("<h3>Verification Result</h3>", unsafe_allow_html=True)
                st.markdown(f"""
                    <div class='result-box'>
                        <p><strong>Claim:</strong> {res['claim']}</p>
                        <p><strong>Evidence:</strong> {res['evidence']}</p>
                        <p class='verdict'><span class='verdict-icon'>{verdict_icons.get(res['verdict'], '')}</span>{res['verdict']}</p>
                        {res['details']}
                    </div>
                """, unsafe_allow_html=True)
                result_text = f"Claim: {res['claim']}\nEvidence: {res['evidence']}\nVerdict: {res['verdict']}\nDetails: {res['details']}"
                st.download_button("Download Result", data=result_text, file_name="verification_result.txt", mime="text/plain")
            else:
                st.info("No verification result yet.")

    elif nav_option == "History":
        st.subheader("Verification History")
        if st.session_state.history:
            for idx, record in enumerate(reversed(st.session_state.history), 1):
                st.markdown(f"**{idx}. Claim:** {record['claim']}  \n**Result:** {verdict_icons.get(record['verdict'], '')} {record['verdict']}")
        else:
            st.write("No verification history yet.")

    elif nav_option == "About":
        st.subheader("About")
        st.markdown("""
            <p align="center">
                <a href="https://arxiv.org/abs/2503.00955">
                    <img src="https://img.shields.io/badge/arXiv-2411.00918-red?style=flat&label=arXiv">
                </a>
                <a href="https://huggingface.co/SemViQA">
                    <img src="https://img.shields.io/badge/Hugging%20Face-Model-yellow?style=flat">
                </a>
                <a href="https://pypi.org/project/SemViQA">
                    <img src="https://img.shields.io/pypi/v/SemViQA?color=blue&label=PyPI">
                </a>
                <a href="https://github.com/DAVID-NGUYEN-S16/SemViQA">
                    <img src="https://img.shields.io/github/stars/DAVID-NGUYEN-S16/SemViQA?style=social">
                </a>
            </p>
        """, unsafe_allow_html=True)
        st.markdown("""
            **Description:**  
            SemViQA is a semantic QA system designed for fact-checking in Vietnamese.  
            It extracts evidence from the provided context and classifies the claim as **SUPPORTED**, **REFUTED**, or **NEI** (Not Enough Information) using state-of-the-art models.
        """)
    
    st.markdown("</div>", unsafe_allow_html=True)