Spaces:
Sleeping
Sleeping
File size: 6,323 Bytes
f4d5aab ee53ecb f4d5aab ee53ecb f4d5aab 77dabd4 f4d5aab 77dabd4 f4d5aab 77dabd4 f4d5aab 77dabd4 f4d5aab 77dabd4 f4d5aab 77dabd4 f4d5aab ee53ecb f4d5aab 77dabd4 f4d5aab 77dabd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import streamlit as st
import torch
from transformers import AutoTokenizer
from semviqa.ser.qatc_model import QATCForQuestionAnswering
from semviqa.tvc.model import ClaimModelForClassification
from semviqa.ser.ser_eval import extract_evidence_tfidf_qatc
from semviqa.tvc.tvc_eval import classify_claim
# Load models with caching
@st.cache_resource()
def load_model(model_name, model_class, is_bc=False):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = model_class.from_pretrained(model_name, num_labels=3 if not is_bc else 2)
return tokenizer, model
# Set up page configuration and custom CSS for a modern, clean look
st.set_page_config(page_title="SemViQA Demo", layout="wide")
st.markdown("""
<style>
.big-title {
font-size: 36px;
font-weight: bold;
color: #4A90E2;
text-align: center;
margin-top: 20px;
}
.sub-title {
font-size: 20px;
color: #666;
text-align: center;
margin-bottom: 20px;
}
.stButton>button {
background-color: #4CAF50;
color: white;
font-size: 16px;
width: 100%;
border-radius: 8px;
padding: 10px;
}
.stTextArea textarea {
font-size: 16px;
}
.result-box {
background-color: #f9f9f9;
padding: 20px;
border-radius: 10px;
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1);
margin-top: 20px;
}
.verdict {
font-size: 24px;
font-weight: bold;
margin: 0;
display: flex;
align-items: center;
}
.verdict-icon {
margin-right: 10px;
}
</style>
""", unsafe_allow_html=True)
st.markdown("<p class='big-title'>SemViQA: Semantic Question Answering System for Vietnamese Fact-Checking</p>", unsafe_allow_html=True)
st.markdown("<p class='sub-title'>Enter a claim and context to verify its accuracy</p>", unsafe_allow_html=True)
# Sidebar: Settings and additional features
with st.sidebar.expander("⚙️ Settings", expanded=False):
tfidf_threshold = st.slider("TF-IDF Threshold", 0.0, 1.0, 0.5, 0.01)
length_ratio_threshold = st.slider("Length Ratio Threshold", 0.1, 1.0, 0.5, 0.01)
qatc_model_name = st.selectbox("QATC Model", [
"SemViQA/qatc-infoxlm-viwikifc",
"SemViQA/qatc-infoxlm-isedsc01",
"SemViQA/qatc-vimrc-viwikifc",
"SemViQA/qatc-vimrc-isedsc01"
])
bc_model_name = st.selectbox("Binary Classification Model", [
"SemViQA/bc-xlmr-viwikifc",
"SemViQA/bc-xlmr-isedsc01",
"SemViQA/bc-infoxlm-viwikifc",
"SemViQA/bc-infoxlm-isedsc01",
"SemViQA/bc-erniem-viwikifc",
"SemViQA/bc-erniem-isedsc01"
])
tc_model_name = st.selectbox("Three-Class Classification Model", [
"SemViQA/tc-xlmr-viwikifc",
"SemViQA/tc-xlmr-isedsc01",
"SemViQA/tc-infoxlm-viwikifc",
"SemViQA/tc-infoxlm-isedsc01",
"SemViQA/tc-erniem-viwikifc",
"SemViQA/tc-erniem-isedsc01"
])
show_details = st.checkbox("Show probability details", value=False)
# Initialize verification history in session state
if 'history' not in st.session_state:
st.session_state.history = []
# Load the selected models
tokenizer_qatc, model_qatc = load_model(qatc_model_name, QATCForQuestionAnswering)
tokenizer_bc, model_bc = load_model(bc_model_name, ClaimModelForClassification, is_bc=True)
tokenizer_tc, model_tc = load_model(tc_model_name, ClaimModelForClassification)
# User input fields
claim = st.text_area("Enter Claim", "Vietnam is a country in Southeast Asia.")
context = st.text_area("Enter Context", "Vietnam is a country located in Southeast Asia, covering an area of over 331,000 km² with a population of more than 98 million people.")
# Define icon mapping for each verdict label
verdict_icons = {
"SUPPORTED": "✅",
"REFUTED": "❌",
"NEI": "⚠️"
}
if st.button("Verify"):
with st.spinner("Verifying..."):
# Extract evidence
evidence = extract_evidence_tfidf_qatc(
claim, context, model_qatc, tokenizer_qatc, "cuda" if torch.cuda.is_available() else "cpu",
confidence_threshold=tfidf_threshold, length_ratio_threshold=length_ratio_threshold
)
# Classify the claim
verdict = "NEI"
prob3class, pred_tc = classify_claim(claim, evidence, model_tc, tokenizer_tc, "cuda" if torch.cuda.is_available() else "cpu")
details = ""
if pred_tc != 0:
prob2class, pred_bc = classify_claim(claim, evidence, model_bc, tokenizer_bc, "cuda" if torch.cuda.is_available() else "cpu")
if pred_bc == 0:
verdict = "SUPPORTED"
elif prob2class > prob3class:
verdict = "REFUTED"
else:
verdict = ["NEI", "SUPPORTED", "REFUTED"][pred_tc]
if show_details:
details = f"<p><strong>3-Class Probability:</strong> {prob3class:.2f} - <strong>2-Class Probability:</strong> {prob2class:.2f}</p>"
# Save the verification record in session history
st.session_state.history.append({
"claim": claim,
"evidence": evidence,
"verdict": verdict
})
# Display the results with icon and label (without extra "Verdict:" text)
st.markdown(f"""
<div class='result-box'>
<h3>Result</h3>
<p><strong>Evidence:</strong> {evidence}</p>
<p class='verdict'><span class='verdict-icon'>{verdict_icons.get(verdict, '')}</span>{verdict}</p>
{details}
</div>
""", unsafe_allow_html=True)
# Display verification history in the sidebar
with st.sidebar.expander("Verification History", expanded=False):
if st.session_state.history:
for idx, record in enumerate(reversed(st.session_state.history), 1):
st.markdown(f"**{idx}. Claim:** {record['claim']} \n**Result:** {verdict_icons.get(record['verdict'], '')} {record['verdict']}")
else:
st.write("No verification history yet.")
|