File size: 6,323 Bytes
f4d5aab
 
 
 
 
 
 
 
 
 
ee53ecb
f4d5aab
ee53ecb
f4d5aab
 
77dabd4
f4d5aab
 
 
 
77dabd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4d5aab
 
 
77dabd4
f4d5aab
 
77dabd4
f4d5aab
77dabd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4d5aab
77dabd4
 
 
 
 
f4d5aab
ee53ecb
f4d5aab
 
77dabd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4d5aab
77dabd4
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import streamlit as st
import torch
from transformers import AutoTokenizer
from semviqa.ser.qatc_model import QATCForQuestionAnswering
from semviqa.tvc.model import ClaimModelForClassification
from semviqa.ser.ser_eval import extract_evidence_tfidf_qatc
from semviqa.tvc.tvc_eval import classify_claim

# Load models with caching
@st.cache_resource()
def load_model(model_name, model_class, is_bc=False):
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = model_class.from_pretrained(model_name, num_labels=3 if not is_bc else 2)
    return tokenizer, model

# Set up page configuration and custom CSS for a modern, clean look
st.set_page_config(page_title="SemViQA Demo", layout="wide")

st.markdown("""
    <style>
        .big-title { 
            font-size: 36px; 
            font-weight: bold; 
            color: #4A90E2; 
            text-align: center; 
            margin-top: 20px;
        }
        .sub-title { 
            font-size: 20px; 
            color: #666; 
            text-align: center; 
            margin-bottom: 20px;
        }
        .stButton>button { 
            background-color: #4CAF50; 
            color: white; 
            font-size: 16px; 
            width: 100%; 
            border-radius: 8px; 
            padding: 10px; 
        }
        .stTextArea textarea { 
            font-size: 16px; 
        }
        .result-box { 
            background-color: #f9f9f9; 
            padding: 20px; 
            border-radius: 10px; 
            box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1); 
            margin-top: 20px;
        }
        .verdict { 
            font-size: 24px; 
            font-weight: bold; 
            margin: 0;
            display: flex;
            align-items: center;
        }
        .verdict-icon { 
            margin-right: 10px;
        }
    </style>
""", unsafe_allow_html=True)

st.markdown("<p class='big-title'>SemViQA: Semantic Question Answering System for Vietnamese Fact-Checking</p>", unsafe_allow_html=True)
st.markdown("<p class='sub-title'>Enter a claim and context to verify its accuracy</p>", unsafe_allow_html=True)

# Sidebar: Settings and additional features
with st.sidebar.expander("⚙️ Settings", expanded=False):
    tfidf_threshold = st.slider("TF-IDF Threshold", 0.0, 1.0, 0.5, 0.01)
    length_ratio_threshold = st.slider("Length Ratio Threshold", 0.1, 1.0, 0.5, 0.01)
    qatc_model_name = st.selectbox("QATC Model", [
        "SemViQA/qatc-infoxlm-viwikifc",
        "SemViQA/qatc-infoxlm-isedsc01",
        "SemViQA/qatc-vimrc-viwikifc",
        "SemViQA/qatc-vimrc-isedsc01"
    ])
    bc_model_name = st.selectbox("Binary Classification Model", [
        "SemViQA/bc-xlmr-viwikifc",
        "SemViQA/bc-xlmr-isedsc01",
        "SemViQA/bc-infoxlm-viwikifc",
        "SemViQA/bc-infoxlm-isedsc01",
        "SemViQA/bc-erniem-viwikifc",
        "SemViQA/bc-erniem-isedsc01"
    ])
    tc_model_name = st.selectbox("Three-Class Classification Model", [
        "SemViQA/tc-xlmr-viwikifc",
        "SemViQA/tc-xlmr-isedsc01",
        "SemViQA/tc-infoxlm-viwikifc",
        "SemViQA/tc-infoxlm-isedsc01",
        "SemViQA/tc-erniem-viwikifc",
        "SemViQA/tc-erniem-isedsc01"
    ])
    show_details = st.checkbox("Show probability details", value=False)

# Initialize verification history in session state
if 'history' not in st.session_state:
    st.session_state.history = []

# Load the selected models
tokenizer_qatc, model_qatc = load_model(qatc_model_name, QATCForQuestionAnswering)
tokenizer_bc, model_bc = load_model(bc_model_name, ClaimModelForClassification, is_bc=True)
tokenizer_tc, model_tc = load_model(tc_model_name, ClaimModelForClassification)

# User input fields
claim = st.text_area("Enter Claim", "Vietnam is a country in Southeast Asia.")
context = st.text_area("Enter Context", "Vietnam is a country located in Southeast Asia, covering an area of over 331,000 km² with a population of more than 98 million people.")

# Define icon mapping for each verdict label
verdict_icons = {
    "SUPPORTED": "✅",
    "REFUTED": "❌",
    "NEI": "⚠️"
}

if st.button("Verify"):
    with st.spinner("Verifying..."):
        # Extract evidence
        evidence = extract_evidence_tfidf_qatc(
            claim, context, model_qatc, tokenizer_qatc, "cuda" if torch.cuda.is_available() else "cpu",
            confidence_threshold=tfidf_threshold, length_ratio_threshold=length_ratio_threshold
        )
        
        # Classify the claim
        verdict = "NEI"
        prob3class, pred_tc = classify_claim(claim, evidence, model_tc, tokenizer_tc, "cuda" if torch.cuda.is_available() else "cpu")
        
        details = ""
        if pred_tc != 0:
            prob2class, pred_bc = classify_claim(claim, evidence, model_bc, tokenizer_bc, "cuda" if torch.cuda.is_available() else "cpu")
            if pred_bc == 0:
                verdict = "SUPPORTED"
            elif prob2class > prob3class:
                verdict = "REFUTED"
            else:
                verdict = ["NEI", "SUPPORTED", "REFUTED"][pred_tc]
            if show_details:
                details = f"<p><strong>3-Class Probability:</strong> {prob3class:.2f} - <strong>2-Class Probability:</strong> {prob2class:.2f}</p>"
        
        # Save the verification record in session history
        st.session_state.history.append({
            "claim": claim,
            "evidence": evidence,
            "verdict": verdict
        })
        
        # Display the results with icon and label (without extra "Verdict:" text)
        st.markdown(f"""
            <div class='result-box'>
                <h3>Result</h3>
                <p><strong>Evidence:</strong> {evidence}</p>
                <p class='verdict'><span class='verdict-icon'>{verdict_icons.get(verdict, '')}</span>{verdict}</p>
                {details}
            </div>
        """, unsafe_allow_html=True)

# Display verification history in the sidebar
with st.sidebar.expander("Verification History", expanded=False):
    if st.session_state.history:
        for idx, record in enumerate(reversed(st.session_state.history), 1):
            st.markdown(f"**{idx}. Claim:** {record['claim']}  \n**Result:** {verdict_icons.get(record['verdict'], '')} {record['verdict']}")
    else:
        st.write("No verification history yet.")