Neurasense / app.py
Sephfox's picture
Update app.py
a8b2fd4 verified
raw
history blame
11.2 kB
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
import time
from transformers import AutoModelForCausalLM, AutoTokenizer
import io
import base64
from streamlit_drawable_canvas import st_canvas
# Set page config for a futuristic look
st.set_page_config(page_title="NeuraSense AI", page_icon="🧠", layout="wide")
# Custom CSS for a futuristic look
st.markdown("""
<style>
body {
color: #E0E0E0;
background-color: #0E1117;
}
.stApp {
background-image: linear-gradient(135deg, #0E1117 0%, #1A1F2C 100%);
}
.stButton>button {
color: #00FFFF;
border-color: #00FFFF;
border-radius: 20px;
}
.stSlider>div>div>div>div {
background-color: #00FFFF;
}
</style>
""", unsafe_allow_html=True)
# Constants
AVATAR_WIDTH, AVATAR_HEIGHT = 600, 800
# Set up DialoGPT model
@st.cache_resource
def load_model():
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
return tokenizer, model
tokenizer, model = load_model()
# Simulated Sensor Classes
class AdvancedSensors:
@staticmethod
def measure_pressure(base_sensitivity, pressure, duration):
return base_sensitivity * pressure * (1 - np.exp(-duration / 2))
@staticmethod
def measure_temperature(base_temp, pressure, duration):
return base_temp + 10 * pressure * (1 - np.exp(-duration / 3))
@staticmethod
def measure_texture(x, y):
textures = ["nano-smooth", "quantum-rough", "neuro-bumpy", "plasma-silky", "graviton-grainy", "zero-point-soft", "dark-matter-hard", "bose-einstein-condensate"]
return textures[hash((x, y)) % len(textures)]
@staticmethod
def measure_em_field(x, y, sensitivity):
return (np.sin(x/30) * np.cos(y/30) + np.random.normal(0, 0.1)) * 10 * sensitivity
@staticmethod
def measure_quantum_state(x, y):
states = ["superposition", "entangled", "decoherent", "quantum tunneling", "quantum oscillation"]
return states[hash((x, y)) % len(states)]
# Create more detailed sensation map for the avatar
def create_sensation_map(width, height):
sensation_map = np.zeros((height, width, 10)) # pain, pleasure, pressure, temp, texture, em, tickle, itch, quantum, neural
for y in range(height):
for x in range(width):
# Base sensitivities
base_sensitivities = np.random.rand(10) * 0.5 + 0.5
# Enhance certain areas
if 200 < x < 400 and 100 < y < 200: # Head
base_sensitivities *= 1.5
elif 250 < x < 350 and 250 < y < 550: # Torso
base_sensitivities[2:6] *= 1.3 # Enhance pressure, temp, texture, em
elif (150 < x < 250 or 350 < x < 450) and 250 < y < 600: # Arms
base_sensitivities[0:2] *= 1.2 # Enhance pain and pleasure
elif 200 < x < 400 and 600 < y < 800: # Legs
base_sensitivities[6:8] *= 1.4 # Enhance tickle and itch
sensation_map[y, x] = base_sensitivities
return sensation_map
avatar_sensation_map = create_sensation_map(AVATAR_WIDTH, AVATAR_HEIGHT)
# Create futuristic human-like avatar
def create_avatar():
img = Image.new('RGBA', (AVATAR_WIDTH, AVATAR_HEIGHT), color=(0,0,0,0))
draw = ImageDraw.Draw(img)
# Body outline
draw.polygon([(300, 100), (200, 250), (250, 600), (300, 750), (350, 600), (400, 250)], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
# Head
draw.ellipse([250, 50, 350, 150], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
# Eyes
draw.ellipse([275, 80, 295, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
draw.ellipse([305, 80, 325, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
# Neural network lines
for _ in range(50):
start = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
end = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
draw.line([start, end], fill=(0, 255, 255, 50), width=1)
return img
avatar_image = create_avatar()
# Streamlit app
st.title("NeuraSense AI: Advanced Humanoid Techno-Sensory Simulation")
# Create two columns
col1, col2 = st.columns([2, 1])
# Avatar display with touch interface
with col1:
st.subheader("Humanoid Avatar Interface")
# Use st_canvas for touch input
canvas_result = st_canvas(
fill_color="rgba(0, 255, 255, 0.3)",
stroke_width=2,
stroke_color="#00FFFF",
background_image=avatar_image,
height=AVATAR_HEIGHT,
width=AVATAR_WIDTH,
drawing_mode="point",
key="canvas",
)
# Touch controls and output
with col2:
st.subheader("Neural Interface Controls")
# Touch duration
touch_duration = st.slider("Interaction Duration (s)", 0.1, 5.0, 1.0, 0.1)
# Touch pressure
touch_pressure = st.slider("Interaction Intensity", 0.1, 2.0, 1.0, 0.1)
if canvas_result.json_data is not None:
objects = canvas_result.json_data["objects"]
if len(objects) > 0:
last_touch = objects[-1]
touch_x, touch_y = last_touch["left"], last_touch["top"]
sensation = avatar_sensation_map[int(touch_y), int(touch_x)]
pain, pleasure, pressure_sens, temp_sens, texture_sens, em_sens, tickle_sens, itch_sens, quantum_sens, neural_sens = sensation
measured_pressure = AdvancedSensors.measure_pressure(pressure_sens, touch_pressure, touch_duration)
measured_temp = AdvancedSensors.measure_temperature(37, touch_pressure, touch_duration)
measured_texture = AdvancedSensors.measure_texture(touch_x, touch_y)
measured_em = AdvancedSensors.measure_em_field(touch_x, touch_y, em_sens)
quantum_state = AdvancedSensors.measure_quantum_state(touch_x, touch_y)
# Calculate overall sensations
pain_level = pain * measured_pressure * touch_pressure
pleasure_level = pleasure * (measured_temp - 37) / 10
tickle_level = tickle_sens * (1 - np.exp(-touch_duration / 0.5))
itch_level = itch_sens * (1 - np.exp(-touch_duration / 1.5))
neural_response = neural_sens * (measured_pressure + measured_temp - 37) / 10
st.write("### Sensory Data Analysis")
st.write(f"Interaction Point: ({touch_x:.1f}, {touch_y:.1f})")
st.write(f"Duration: {touch_duration:.1f} s | Intensity: {touch_pressure:.2f}")
# Create a futuristic data display
data_display = f"""
```
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Pressure : {measured_pressure:.2f} β”‚
β”‚ Temperature : {measured_temp:.2f}Β°C β”‚
β”‚ Texture : {measured_texture} β”‚
β”‚ EM Field : {measured_em:.2f} ΞΌT β”‚
β”‚ Quantum State: {quantum_state} β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Pain Level : {pain_level:.2f} β”‚
β”‚ Pleasure : {pleasure_level:.2f} β”‚
β”‚ Tickle : {tickle_level:.2f} β”‚
β”‚ Itch : {itch_level:.2f} β”‚
β”‚ Neural Response: {neural_response:.2f} β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
"""
st.code(data_display, language="")
# Generate description
prompt = f"""Human: Analyze the sensory input for a hyper-advanced AI humanoid:
Location: ({touch_x:.1f}, {touch_y:.1f})
Duration: {touch_duration:.1f}s, Intensity: {touch_pressure:.2f}
Pressure: {measured_pressure:.2f}
Temperature: {measured_temp:.2f}Β°C
Texture: {measured_texture}
EM Field: {measured_em:.2f} ΞΌT
Quantum State: {quantum_state}
Resulting in:
Pain: {pain_level:.2f}, Pleasure: {pleasure_level:.2f}
Tickle: {tickle_level:.2f}, Itch: {itch_level:.2f}
Neural Response: {neural_response:.2f}
Provide a detailed, scientific analysis of the AI's experience.
AI:"""
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output = model.generate(input_ids, max_length=300, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7)
response = tokenizer.decode(output[0], skip_special_tokens=True).split("AI:")[-1].strip()
st.write("### AI's Sensory Analysis:")
st.write(response)
# Visualize sensation map
st.subheader("Quantum Neuro-Sensory Map")
fig, axs = plt.subplots(2, 5, figsize=(20, 8))
titles = ['Pain', 'Pleasure', 'Pressure', 'Temperature', 'Texture', 'EM Field', 'Tickle', 'Itch', 'Quantum', 'Neural']
for i, title in enumerate(titles):
ax = axs[i // 5, i % 5]
im = ax.imshow(avatar_sensation_map[:, :, i], cmap='plasma')
ax.set_title(title)
fig.colorbar(im, ax=ax)
plt.tight_layout()
st.pyplot(fig)
st.write("The quantum neuro-sensory map illustrates the varying sensitivities across the AI's body. Brighter areas indicate heightened responsiveness to specific stimuli.")
# Add information about the AI's advanced capabilities
st.subheader("NeuraSense AI: Cutting-Edge Sensory Capabilities")
st.write("""
This hyper-advanced AI humanoid incorporates revolutionary sensory technology:
1. Quantum-Enhanced Pressure Sensors: Utilize quantum tunneling effects for unparalleled sensitivity.
2. Nano-scale Thermal Detectors: Capable of detecting temperature variations to 0.001Β°C.
3. Adaptive Texture Analysis: Employs machine learning to continually refine texture perception.
4. Electromagnetic Field Sensors: Can detect and analyze complex EM patterns in the environment.
5. Quantum State Detector: Interprets quantum phenomena, adding a new dimension to sensory input.
6. Neural Network Integration: Simulates complex interplay of sensations, creating emergent experiences.
7. Tickle and Itch Simulation: Replicates these unique sensations with quantum-level precision.
The AI's responses are generated using an advanced language model, providing detailed scientific analysis of its sensory experiences. This simulation showcases the potential for creating incredibly sophisticated and responsive artificial sensory systems that go beyond human capabilities.
""")
# Footer
st.write("---")
st.write("NeuraSense AI: Quantum-Enhanced Sensory Simulation v3.0")
st.write("Disclaimer: This is an advanced simulation and does not represent current technological capabilities.")