Spaces:
Running
Running
import streamlit as st | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from PIL import Image, ImageDraw, ImageFont | |
import time | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import io | |
import base64 | |
from streamlit_drawable_canvas import st_canvas | |
# Set page config for a futuristic look | |
st.set_page_config(page_title="NeuraSense AI", page_icon="π§ ", layout="wide") | |
# Custom CSS for a futuristic look | |
st.markdown(""" | |
<style> | |
body { | |
color: #E0E0E0; | |
background-color: #0E1117; | |
} | |
.stApp { | |
background-image: linear-gradient(135deg, #0E1117 0%, #1A1F2C 100%); | |
} | |
.stButton>button { | |
color: #00FFFF; | |
border-color: #00FFFF; | |
border-radius: 20px; | |
} | |
.stSlider>div>div>div>div { | |
background-color: #00FFFF; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Constants | |
AVATAR_WIDTH, AVATAR_HEIGHT = 600, 800 | |
# Set up DialoGPT model | |
def load_model(): | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") | |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") | |
return tokenizer, model | |
tokenizer, model = load_model() | |
# Simulated Sensor Classes | |
class AdvancedSensors: | |
def measure_pressure(base_sensitivity, pressure, duration): | |
return base_sensitivity * pressure * (1 - np.exp(-duration / 2)) | |
def measure_temperature(base_temp, pressure, duration): | |
return base_temp + 10 * pressure * (1 - np.exp(-duration / 3)) | |
def measure_texture(x, y): | |
textures = ["nano-smooth", "quantum-rough", "neuro-bumpy", "plasma-silky", "graviton-grainy", "zero-point-soft", "dark-matter-hard", "bose-einstein-condensate"] | |
return textures[hash((x, y)) % len(textures)] | |
def measure_em_field(x, y, sensitivity): | |
return (np.sin(x/30) * np.cos(y/30) + np.random.normal(0, 0.1)) * 10 * sensitivity | |
def measure_quantum_state(x, y): | |
states = ["superposition", "entangled", "decoherent", "quantum tunneling", "quantum oscillation"] | |
return states[hash((x, y)) % len(states)] | |
# Create more detailed sensation map for the avatar | |
def create_sensation_map(width, height): | |
sensation_map = np.zeros((height, width, 10)) # pain, pleasure, pressure, temp, texture, em, tickle, itch, quantum, neural | |
for y in range(height): | |
for x in range(width): | |
# Base sensitivities | |
base_sensitivities = np.random.rand(10) * 0.5 + 0.5 | |
# Enhance certain areas | |
if 200 < x < 400 and 100 < y < 200: # Head | |
base_sensitivities *= 1.5 | |
elif 250 < x < 350 and 250 < y < 550: # Torso | |
base_sensitivities[2:6] *= 1.3 # Enhance pressure, temp, texture, em | |
elif (150 < x < 250 or 350 < x < 450) and 250 < y < 600: # Arms | |
base_sensitivities[0:2] *= 1.2 # Enhance pain and pleasure | |
elif 200 < x < 400 and 600 < y < 800: # Legs | |
base_sensitivities[6:8] *= 1.4 # Enhance tickle and itch | |
sensation_map[y, x] = base_sensitivities | |
return sensation_map | |
avatar_sensation_map = create_sensation_map(AVATAR_WIDTH, AVATAR_HEIGHT) | |
# Create futuristic human-like avatar | |
def create_avatar(): | |
img = Image.new('RGBA', (AVATAR_WIDTH, AVATAR_HEIGHT), color=(0,0,0,0)) | |
draw = ImageDraw.Draw(img) | |
# Body outline | |
draw.polygon([(300, 100), (200, 250), (250, 600), (300, 750), (350, 600), (400, 250)], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255)) | |
# Head | |
draw.ellipse([250, 50, 350, 150], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255)) | |
# Eyes | |
draw.ellipse([275, 80, 295, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255)) | |
draw.ellipse([305, 80, 325, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255)) | |
# Neural network lines | |
for _ in range(50): | |
start = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT)) | |
end = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT)) | |
draw.line([start, end], fill=(0, 255, 255, 50), width=1) | |
return img | |
avatar_image = create_avatar() | |
# Streamlit app | |
st.title("NeuraSense AI: Advanced Humanoid Techno-Sensory Simulation") | |
# Create two columns | |
col1, col2 = st.columns([2, 1]) | |
# Avatar display with touch interface | |
with col1: | |
st.subheader("Humanoid Avatar Interface") | |
# Use st_canvas for touch input | |
canvas_result = st_canvas( | |
fill_color="rgba(0, 255, 255, 0.3)", | |
stroke_width=2, | |
stroke_color="#00FFFF", | |
background_image=avatar_image, | |
height=AVATAR_HEIGHT, | |
width=AVATAR_WIDTH, | |
drawing_mode="point", | |
key="canvas", | |
) | |
# Touch controls and output | |
with col2: | |
st.subheader("Neural Interface Controls") | |
# Touch duration | |
touch_duration = st.slider("Interaction Duration (s)", 0.1, 5.0, 1.0, 0.1) | |
# Touch pressure | |
touch_pressure = st.slider("Interaction Intensity", 0.1, 2.0, 1.0, 0.1) | |
if canvas_result.json_data is not None: | |
objects = canvas_result.json_data["objects"] | |
if len(objects) > 0: | |
last_touch = objects[-1] | |
touch_x, touch_y = last_touch["left"], last_touch["top"] | |
sensation = avatar_sensation_map[int(touch_y), int(touch_x)] | |
pain, pleasure, pressure_sens, temp_sens, texture_sens, em_sens, tickle_sens, itch_sens, quantum_sens, neural_sens = sensation | |
measured_pressure = AdvancedSensors.measure_pressure(pressure_sens, touch_pressure, touch_duration) | |
measured_temp = AdvancedSensors.measure_temperature(37, touch_pressure, touch_duration) | |
measured_texture = AdvancedSensors.measure_texture(touch_x, touch_y) | |
measured_em = AdvancedSensors.measure_em_field(touch_x, touch_y, em_sens) | |
quantum_state = AdvancedSensors.measure_quantum_state(touch_x, touch_y) | |
# Calculate overall sensations | |
pain_level = pain * measured_pressure * touch_pressure | |
pleasure_level = pleasure * (measured_temp - 37) / 10 | |
tickle_level = tickle_sens * (1 - np.exp(-touch_duration / 0.5)) | |
itch_level = itch_sens * (1 - np.exp(-touch_duration / 1.5)) | |
neural_response = neural_sens * (measured_pressure + measured_temp - 37) / 10 | |
st.write("### Sensory Data Analysis") | |
st.write(f"Interaction Point: ({touch_x:.1f}, {touch_y:.1f})") | |
st.write(f"Duration: {touch_duration:.1f} s | Intensity: {touch_pressure:.2f}") | |
# Create a futuristic data display | |
data_display = f""" | |
``` | |
βββββββββββββββββββββββββββββββββββββββββββββββ | |
β Pressure : {measured_pressure:.2f} β | |
β Temperature : {measured_temp:.2f}Β°C β | |
β Texture : {measured_texture} β | |
β EM Field : {measured_em:.2f} ΞΌT β | |
β Quantum State: {quantum_state} β | |
βββββββββββββββββββββββββββββββββββββββββββββββ€ | |
β Pain Level : {pain_level:.2f} β | |
β Pleasure : {pleasure_level:.2f} β | |
β Tickle : {tickle_level:.2f} β | |
β Itch : {itch_level:.2f} β | |
β Neural Response: {neural_response:.2f} β | |
βββββββββββββββββββββββββββββββββββββββββββββββ | |
""" | |
st.code(data_display, language="") | |
# Generate description | |
prompt = f"""Human: Analyze the sensory input for a hyper-advanced AI humanoid: | |
Location: ({touch_x:.1f}, {touch_y:.1f}) | |
Duration: {touch_duration:.1f}s, Intensity: {touch_pressure:.2f} | |
Pressure: {measured_pressure:.2f} | |
Temperature: {measured_temp:.2f}Β°C | |
Texture: {measured_texture} | |
EM Field: {measured_em:.2f} ΞΌT | |
Quantum State: {quantum_state} | |
Resulting in: | |
Pain: {pain_level:.2f}, Pleasure: {pleasure_level:.2f} | |
Tickle: {tickle_level:.2f}, Itch: {itch_level:.2f} | |
Neural Response: {neural_response:.2f} | |
Provide a detailed, scientific analysis of the AI's experience. | |
AI:""" | |
input_ids = tokenizer.encode(prompt, return_tensors="pt") | |
output = model.generate(input_ids, max_length=300, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7) | |
response = tokenizer.decode(output[0], skip_special_tokens=True).split("AI:")[-1].strip() | |
st.write("### AI's Sensory Analysis:") | |
st.write(response) | |
# Visualize sensation map | |
st.subheader("Quantum Neuro-Sensory Map") | |
fig, axs = plt.subplots(2, 5, figsize=(20, 8)) | |
titles = ['Pain', 'Pleasure', 'Pressure', 'Temperature', 'Texture', 'EM Field', 'Tickle', 'Itch', 'Quantum', 'Neural'] | |
for i, title in enumerate(titles): | |
ax = axs[i // 5, i % 5] | |
im = ax.imshow(avatar_sensation_map[:, :, i], cmap='plasma') | |
ax.set_title(title) | |
fig.colorbar(im, ax=ax) | |
plt.tight_layout() | |
st.pyplot(fig) | |
st.write("The quantum neuro-sensory map illustrates the varying sensitivities across the AI's body. Brighter areas indicate heightened responsiveness to specific stimuli.") | |
# Add information about the AI's advanced capabilities | |
st.subheader("NeuraSense AI: Cutting-Edge Sensory Capabilities") | |
st.write(""" | |
This hyper-advanced AI humanoid incorporates revolutionary sensory technology: | |
1. Quantum-Enhanced Pressure Sensors: Utilize quantum tunneling effects for unparalleled sensitivity. | |
2. Nano-scale Thermal Detectors: Capable of detecting temperature variations to 0.001Β°C. | |
3. Adaptive Texture Analysis: Employs machine learning to continually refine texture perception. | |
4. Electromagnetic Field Sensors: Can detect and analyze complex EM patterns in the environment. | |
5. Quantum State Detector: Interprets quantum phenomena, adding a new dimension to sensory input. | |
6. Neural Network Integration: Simulates complex interplay of sensations, creating emergent experiences. | |
7. Tickle and Itch Simulation: Replicates these unique sensations with quantum-level precision. | |
The AI's responses are generated using an advanced language model, providing detailed scientific analysis of its sensory experiences. This simulation showcases the potential for creating incredibly sophisticated and responsive artificial sensory systems that go beyond human capabilities. | |
""") | |
# Footer | |
st.write("---") | |
st.write("NeuraSense AI: Quantum-Enhanced Sensory Simulation v3.0") | |
st.write("Disclaimer: This is an advanced simulation and does not represent current technological capabilities.") |