File size: 14,659 Bytes
827d113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf6dd2e
18e3ad7
2360e47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf6dd2e
18e3ad7
 
 
bf6dd2e
 
 
 
18e3ad7
 
bf6dd2e
 
 
18e3ad7
bf6dd2e
 
18e3ad7
 
 
 
 
 
 
 
 
 
 
 
 
bf6dd2e
18e3ad7
 
bf6dd2e
 
 
 
 
 
 
 
 
 
 
 
 
 
18e3ad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf6dd2e
18e3ad7
 
 
 
 
 
 
 
 
bf6dd2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
827d113
bc0df63
 
 
 
 
7117c2e
c470655
 
 
 
 
 
 
 
 
 
 
 
 
220ffe7
c470655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05e7c02
c470655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf6dd2e
 
 
 
 
 
 
16189d5
c470655
 
 
 
bf6dd2e
c470655
 
bf6dd2e
c470655
 
 
 
 
 
 
 
 
 
 
 
 
827d113
23daa6d
c470655
 
 
 
 
 
 
 
 
 
 
 
 
bf6dd2e
c470655
220ffe7
c470655
 
 
 
 
 
 
bf6dd2e
c470655
bf6dd2e
c470655
 
 
 
 
 
 
 
 
bf6dd2e
c470655
bf6dd2e
c470655
d761765
 
 
 
 
 
 
 
bf6dd2e
d761765
bf6dd2e
d761765
 
 
bf6dd2e
 
 
 
 
 
d761765
 
bf6dd2e
d761765
bf6dd2e
 
 
d761765
 
bf6dd2e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import os
import gc
import gradio as gr
import numpy as np
import torch
import json
import spaces
import config
import utils
import logging
from PIL import Image, PngImagePlugin
from datetime import datetime
from diffusers.models import AutoencoderKL
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline

# ... (keep the existing imports and configurations)

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

DESCRIPTION = "PonyDiffusion V6 XL"
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. </p>"
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
HF_TOKEN = os.getenv("HF_TOKEN")
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512"))
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")

MODEL = os.getenv(
    "MODEL",
    "https://huggingface.co/AstraliteHeart/pony-diffusion-v6/blob/main/v6.safetensors",
)

torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")


def load_pipeline(model_name):
    vae = AutoencoderKL.from_pretrained(
        "madebyollin/sdxl-vae-fp16-fix",
        torch_dtype=torch.float16,
    )
    pipeline = (
        StableDiffusionXLPipeline.from_single_file
        if MODEL.endswith(".safetensors")
        else StableDiffusionXLPipeline.from_pretrained
    )

    pipe = pipeline(
        model_name,
        vae=vae,
        torch_dtype=torch.float16,
        custom_pipeline="lpw_stable_diffusion_xl",
        use_safetensors=True,
        add_watermarker=False,
        use_auth_token=HF_TOKEN,
        variant="fp16",
    )

    pipe.to(device)
    return pipe


# Add a new function to parse and validate JSON input
def parse_json_parameters(json_str):
    try:
        params = json.loads(json_str)
        required_keys = ['prompt', 'negative_prompt', 'seed', 'width', 'height', 'guidance_scale', 'num_inference_steps', 'sampler']
        for key in required_keys:
            if key not in params:
                raise ValueError(f"Missing required key: {key}")
        return params
    except json.JSONDecodeError:
        raise ValueError("Invalid JSON format")
    except Exception as e:
        raise ValueError(f"Error parsing JSON: {str(e)}")

# Modify the generate function to accept JSON parameters
@spaces.GPU
def generate(
    prompt: str,
    negative_prompt: str = "",
    seed: int = 0,
    custom_width: int = 1024,
    custom_height: int = 1024,
    guidance_scale: float = 7.0,
    num_inference_steps: int = 30,
    sampler: str = "DPM++ 2M SDE Karras",
    aspect_ratio_selector: str = "1024 x 1024",
    use_upscaler: bool = False,
    upscaler_strength: float = 0.55,
    upscale_by: float = 1.5,
    json_params: str = "",
    progress=gr.Progress(track_tqdm=True),
) -> Image:
    if json_params:
        try:
            params = parse_json_parameters(json_params)
            prompt = params['prompt']
            negative_prompt = params['negative_prompt']
            seed = params['seed']
            custom_width = params['width']
            custom_height = params['height']
            guidance_scale = params['guidance_scale']
            num_inference_steps = params['num_inference_steps']
            sampler = params['sampler']
        except ValueError as e:
            raise gr.Error(str(e))

    generator = utils.seed_everything(seed)

    width, height = utils.aspect_ratio_handler(
        aspect_ratio_selector,
        custom_width,
        custom_height,
    )

    width, height = utils.preprocess_image_dimensions(width, height)

    backup_scheduler = pipe.scheduler
    pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler)

    if use_upscaler:
        upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
    metadata = {
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "resolution": f"{width} x {height}",
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "seed": seed,
        "sampler": sampler,
    }

    if use_upscaler:
        new_width = int(width * upscale_by)
        new_height = int(height * upscale_by)
        metadata["use_upscaler"] = {
            "upscale_method": "nearest-exact",
            "upscaler_strength": upscaler_strength,
            "upscale_by": upscale_by,
            "new_resolution": f"{new_width} x {new_height}",
        }
    else:
        metadata["use_upscaler"] = None
    logger.info(json.dumps(metadata, indent=4))

    try:
        if use_upscaler:
            latents = pipe(
                prompt=prompt,
                negative_prompt=negative_prompt,
                width=width,
                height=height,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                generator=generator,
                output_type="latent",
            ).images
            upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by)
            images = upscaler_pipe(
                prompt=prompt,
                negative_prompt=negative_prompt,
                image=upscaled_latents,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                strength=upscaler_strength,
                generator=generator,
                output_type="pil",
            ).images
        else:
            images = pipe(
                prompt=prompt,
                negative_prompt=negative_prompt,
                width=width,
                height=height,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                generator=generator,
                output_type="pil",
            ).images

        if images and IS_COLAB:
            for image in images:
                filepath = utils.save_image(image, metadata, OUTPUT_DIR)
                logger.info(f"Image saved as {filepath} with metadata")

        return images, metadata
    except Exception as e:
        logger.exception(f"An error occurred: {e}")
        raise
    finally:
        if use_upscaler:
            del upscaler_pipe
        pipe.scheduler = backup_scheduler
        utils.free_memory()

# Initialize an empty list to store the generation history
generation_history = []

# Function to update the history dropdown
def update_history_dropdown():
    return gr.Dropdown.update(choices=[f"{item['prompt']} ({item['timestamp']})" for item in generation_history])

# Modify the generate function to add results to the history
def generate_and_update_history(*args, **kwargs):
    images, metadata = generate(*args, **kwargs)
    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    generation_history.insert(0, {"prompt": metadata["prompt"], "timestamp": timestamp, "image": images[0], "metadata": metadata})
    if len(generation_history) > 10:  # Limit history to 10 items
        generation_history.pop()
    return images, metadata, update_history_dropdown()

# Function to display selected history item
def display_history_item(selected_item):
    if not selected_item:
        return None, None
    for item in generation_history:
        if f"{item['prompt']} ({item['timestamp']})" == selected_item:
            return item['image'], json.dumps(item['metadata'], indent=2)
    return None, None

if torch.cuda.is_available():
    pipe = load_pipeline(MODEL)
    logger.info("Loaded on Device!")
else:
    pipe = None

with gr.Blocks(css="style.css") as demo:
    title = gr.HTML(
        f"""<h1><span>{DESCRIPTION}</span></h1>""",
        elem_id="title",
    )
    gr.Markdown(
        f"""Gradio demo for [Pony Diffusion V6](https://civitai.com/models/257749/pony-diffusion-v6-xl/)""",
        elem_id="subtitle",
    )
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=5,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button(
                "Generate", 
                variant="primary", 
                scale=0
            )
        result = gr.Gallery(
            label="Result", 
            columns=1, 
            preview=True, 
            show_label=False
        )
    with gr.Accordion(label="Advanced Settings", open=False):
        negative_prompt = gr.Text(
            label="Negative Prompt",
            max_lines=5,
            placeholder="Enter a negative prompt",
            value=""
        )
        aspect_ratio_selector = gr.Radio(
            label="Aspect Ratio",
            choices=config.aspect_ratios,
            value="1024 x 1024",
            container=True,
        )
        with gr.Group(visible=False) as custom_resolution:
            with gr.Row():
                custom_width = gr.Slider(
                    label="Width",
                    minimum=MIN_IMAGE_SIZE,
                    maximum=MAX_IMAGE_SIZE,
                    step=8,
                    value=1024,
                )
                custom_height = gr.Slider(
                    label="Height",
                    minimum=MIN_IMAGE_SIZE,
                    maximum=MAX_IMAGE_SIZE,
                    step=8,
                    value=1024,
                )
        use_upscaler = gr.Checkbox(label="Use Upscaler", value=False)
        with gr.Row() as upscaler_row:
            upscaler_strength = gr.Slider(
                label="Strength",
                minimum=0,
                maximum=1,
                step=0.05,
                value=0.55,
                visible=False,
            )
            upscale_by = gr.Slider(
                label="Upscale by",
                minimum=1,
                maximum=1.5,
                step=0.1,
                value=1.5,
                visible=False,
            )

        sampler = gr.Dropdown(
            label="Sampler",
            choices=config.sampler_list,
            interactive=True,
            value="DPM++ 2M SDE Karras",
        )
        with gr.Row():
            seed = gr.Slider(
                label="Seed", minimum=0, maximum=utils.MAX_SEED, step=1, value=0
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Group():
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=1,
                    maximum=12,
                    step=0.1,
                    value=7.0,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )
    with gr.Accordion(label="Generation Parameters", open=False):
        gr_metadata = gr.JSON(label="Metadata", show_label=False)
        json_input = gr.TextArea(label="Edit/Paste JSON Parameters", placeholder="Paste or edit JSON parameters here")
        generate_from_json = gr.Button("Generate from JSON")

    # Add history dropdown
    history_dropdown = gr.Dropdown(label="Generation History", choices=[], interactive=True)
    history_image = gr.Image(label="Selected Image", interactive=False)
    history_metadata = gr.JSON(label="Selected Metadata", show_label=False)

    gr.Examples(
        examples=config.examples,
        inputs=prompt,
        outputs=[result, gr_metadata],
        fn=lambda *args, **kwargs: generate_and_update_history(*args, use_upscaler=True, **kwargs),
        cache_examples=CACHE_EXAMPLES,
    )

    use_upscaler.change(
        fn=lambda x: [gr.update(visible=x), gr.update(visible=x)],
        inputs=use_upscaler,
        outputs=[upscaler_strength, upscale_by],
        queue=False,
        api_name=False,
    )
    aspect_ratio_selector.change(
        fn=lambda x: gr.update(visible=x == "Custom"),
        inputs=aspect_ratio_selector,
        outputs=custom_resolution,
        queue=False,
        api_name=False,
    )

    inputs = [
        prompt,
        negative_prompt,
        seed,
        custom_width,
        custom_height,
        guidance_scale,
        num_inference_steps,
        sampler,
        aspect_ratio_selector,
        use_upscaler,
        upscaler_strength,
        upscale_by,
        json_input,  # Add JSON input to the list of inputs
    ]

    prompt.submit(
        fn=utils.randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate_and_update_history,  # Use the new function
        inputs=inputs,
        outputs=[result, gr_metadata, history_dropdown],  # Add history_dropdown to outputs
        api_name="run",
    )
    negative_prompt.submit(
        fn=utils.randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate_and_update_history,  # Use the new function
        inputs=inputs,
        outputs=[result, gr_metadata, history_dropdown],  # Add history_dropdown to outputs
        api_name=False,
    )
    run_button.click(
        fn=utils.randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate_and_update_history,  # Use the new function
        inputs=inputs,
        outputs=[result, gr_metadata, history_dropdown],  # Add history_dropdown to outputs
        api_name=False,
    )

    # Add event handler for generate_from_json button
    generate_from_json.click(
        fn=generate_and_update_history,
        inputs=inputs,
        outputs=[result, gr_metadata, history_dropdown],
        api_name=False,
    )

    # Add event handler for history_dropdown
    history_dropdown.change(
        fn=display_history_item,
        inputs=[history_dropdown],
        outputs=[history_image, history_metadata],
    )

demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)