Spaces:
Runtime error
Runtime error
File size: 15,523 Bytes
827d113 2360e47 075025f 2360e47 18e3ad7 b7d3711 bf6dd2e b7d3711 18e3ad7 bf6dd2e 18e3ad7 bf6dd2e 18e3ad7 bf6dd2e 18e3ad7 bf6dd2e b7d3711 bf6dd2e 18e3ad7 bf6dd2e 18e3ad7 bf6dd2e 07a8fae b78371d 07a8fae b7d3711 07a8fae bf6dd2e 07a8fae bf6dd2e 9538990 827d113 bc0df63 7117c2e ad33dab 5ecfc1b c470655 072d998 c470655 5ecfc1b c470655 220ffe7 c470655 b7d3711 c470655 bf6dd2e 75c23d2 3c1ccea 16189d5 c470655 bf6dd2e c470655 bf6dd2e c470655 3c1ccea c470655 827d113 23daa6d c470655 07a8fae c470655 220ffe7 c470655 07a8fae c470655 b7d3711 c470655 9538990 c470655 07a8fae c470655 b7d3711 d761765 9538990 d761765 07a8fae d761765 b7d3711 d761765 9538990 bf6dd2e b7d3711 d761765 9538990 ad33dab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
import os
import gc
import gradio as gr
import numpy as np
import torch
import json
import spaces
import config
import utils
import logging
from PIL import Image, PngImagePlugin
from datetime import datetime
from diffusers.models import AutoencoderKL
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. </p>"
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
HF_TOKEN = os.getenv("HF_TOKEN")
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512"))
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")
MODEL = os.getenv(
"MODEL",
"https://huggingface.co/AstraliteHeart/pony-diffusion-v6/blob/main/v6.safetensors",
)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def load_pipeline(model_name):
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16,
)
pipeline = (
StableDiffusionXLPipeline.from_single_file
if MODEL.endswith(".safetensors")
else StableDiffusionXLPipeline.from_pretrained
)
pipe = pipeline(
model_name,
vae=vae,
torch_dtype=torch.float16,
custom_pipeline="lpw_stable_diffusion_xl",
use_safetensors=True,
add_watermarker=False,
use_auth_token=HF_TOKEN,
variant="fp16",
)
pipe.to(device)
return pipe
def parse_json_parameters(json_str):
try:
params = json.loads(json_str)
required_keys = ['prompt', 'negative_prompt', 'resolution', 'guidance_scale', 'num_inference_steps', 'seed', 'sampler']
for key in required_keys:
if key not in params:
raise ValueError(f"Missing required key: {key}")
# Parse resolution
width, height = map(int, params['resolution'].split(' x '))
return {
'prompt': params['prompt'],
'negative_prompt': params['negative_prompt'],
'seed': params['seed'],
'width': width,
'height': height,
'guidance_scale': params['guidance_scale'],
'num_inference_steps': params['num_inference_steps'],
'sampler': params['sampler'],
'use_upscaler': params.get('use_upscaler', False)
}
except json.JSONDecodeError:
raise ValueError("Invalid JSON format")
except Exception as e:
raise ValueError(f"Error parsing JSON: {str(e)}")
@spaces.GPU
def generate(
prompt: str,
negative_prompt: str = "",
seed: int = 0,
custom_width: int = 1024,
custom_height: int = 1024,
guidance_scale: float = 7.0,
num_inference_steps: int = 30,
sampler: str = "DPM++ 2M SDE Karras",
aspect_ratio_selector: str = "1024 x 1024",
use_upscaler: bool = False,
upscaler_strength: float = 0.55,
upscale_by: float = 1.5,
json_params: str = "",
progress=gr.Progress(track_tqdm=True),
) -> Image:
if json_params:
try:
params = parse_json_parameters(json_params)
prompt = params['prompt']
negative_prompt = params['negative_prompt']
seed = params['seed']
custom_width = params['width']
custom_height = params['height']
guidance_scale = params['guidance_scale']
num_inference_steps = params['num_inference_steps']
sampler = params['sampler']
use_upscaler = params['use_upscaler']
except ValueError as e:
raise gr.Error(str(e))
generator = utils.seed_everything(seed)
width, height = utils.aspect_ratio_handler(
aspect_ratio_selector,
custom_width,
custom_height,
)
width, height = utils.preprocess_image_dimensions(width, height)
backup_scheduler = pipe.scheduler
pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler)
if use_upscaler:
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
metadata = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"resolution": f"{width} x {height}",
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"seed": seed,
"sampler": sampler,
}
if use_upscaler:
new_width = int(width * upscale_by)
new_height = int(height * upscale_by)
metadata["use_upscaler"] = {
"upscale_method": "nearest-exact",
"upscaler_strength": upscaler_strength,
"upscale_by": upscale_by,
"new_resolution": f"{new_width} x {new_height}",
}
else:
metadata["use_upscaler"] = None
logger.info(json.dumps(metadata, indent=4))
try:
if use_upscaler:
latents = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="latent",
).images
upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by)
images = upscaler_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=upscaled_latents,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
strength=upscaler_strength,
generator=generator,
output_type="pil",
).images
else:
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="pil",
).images
if images and IS_COLAB:
for image in images:
filepath = utils.save_image(image, metadata, OUTPUT_DIR)
logger.info(f"Image saved as {filepath} with metadata")
return images, metadata
except Exception as e:
logger.exception(f"An error occurred: {e}")
raise
finally:
if use_upscaler:
del upscaler_pipe
pipe.scheduler = backup_scheduler
utils.free_memory()
# Initialize an empty list to store the generation history
generation_history = []
# Function to update the history list
def update_history_list():
return [item["image"] for item in generation_history]
# Function to handle image click in history
def handle_image_click(evt: gr.SelectData):
selected = generation_history[evt.index]
return selected["image"], json.dumps(selected["metadata"], indent=2)
# Modify the generate function to add results to the history
def generate_and_update_history(*args, **kwargs):
images, metadata = generate(*args, **kwargs)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
generation_history.insert(0, {
"prompt": metadata["prompt"],
"timestamp": timestamp,
"image": images[0],
"metadata": metadata
})
if len(generation_history) > 10: # Limit history to 10 items
generation_history.pop()
return images[0], json.dumps(metadata, indent=2), update_history_list()
if torch.cuda.is_available():
pipe = load_pipeline(MODEL)
logger.info("Loaded on Device!")
else:
pipe = None
with gr.Blocks(css="style.css") as demo:
gr.HTML("""
<header id="site-header">
<nav>
<a href="https://sergidev.me">
<img
src="https://myamber.cloud/life/v1/file?query=%7B%22token%22%3A%227f2b2ba3ef1651d299c9d5a683e8b68c%22%2C%22root%22%3A%22cloud%22%2C%22path%22%3A%22%2Fshared-to%2Ff8b4f187-ec556f6f%22%7D"
alt="Logo"
/>
</a>
<h1>HDiffusion</h1>
<div class="mode-switch">
<img
src="https://icon-library.com/images/window-icon-png/window-icon-png-0.jpg"
id="projects-icon"
alt="Projects"
/>
<img
src="https://creazilla-store.fra1.digitaloceanspaces.com/icons/3206440/terminal-icon-sm.png"
id="terminal-icon"
alt="Terminal"
/>
</div>
</nav>
</header>
""")
gr.Markdown(
f"""Gradio demo for [Pony Diffusion V6](https://civitai.com/models/257749/pony-diffusion-v6-xl/) with image gallery, json support, and advanced options.""",
elem_id="subtitle",
)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=5,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button(
"Generate",
variant="primary",
scale=0
)
result = gr.Image(
label="Result",
show_label=False
)
with gr.Accordion(label="Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative Prompt",
max_lines=5,
placeholder="Enter a negative prompt",
value=""
)
aspect_ratio_selector = gr.Radio(
label="Aspect Ratio",
choices=config.aspect_ratios,
value="1024 x 1024",
container=True,
)
with gr.Group(visible=False) as custom_resolution:
with gr.Row():
custom_width = gr.Slider(
label="Width",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=1024,
)
custom_height = gr.Slider(
label="Height",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=1024,
)
use_upscaler = gr.Checkbox(label="Use Upscaler", value=False)
with gr.Row() as upscaler_row:
upscaler_strength = gr.Slider(
label="Strength",
minimum=0,
maximum=1,
step=0.05,
value=0.55,
visible=False,
)
upscale_by = gr.Slider(
label="Upscale by",
minimum=1,
maximum=1.5,
step=0.1,
value=1.5,
visible=False,
)
sampler = gr.Dropdown(
label="Sampler",
choices=config.sampler_list,
interactive=True,
value="DPM++ 2M SDE Karras",
)
with gr.Row():
seed = gr.Slider(
label="Seed", minimum=0, maximum=utils.MAX_SEED, step=1, value=0
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Group():
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1,
maximum=12,
step=0.1,
value=7.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
with gr.Accordion(label="Generation Parameters", open=False):
gr_metadata = gr.JSON(label="Metadata", show_label=False)
json_input = gr.TextArea(label="Edit/Paste JSON Parameters", placeholder="Paste or edit JSON parameters here")
generate_from_json = gr.Button("Generate from JSON")
with gr.Accordion("Generation History", open=False) as history_accordion:
history_gallery = gr.Gallery(
label="History",
show_label=False,
elem_id="history_gallery",
columns=5,
rows=2,
height="auto"
)
with gr.Row():
selected_image = gr.Image(label="Selected Image", interactive=False)
selected_metadata = gr.JSON(label="Selected Metadata", show_label=False)
gr.Examples(
examples=config.examples,
inputs=prompt,
outputs=[result, gr_metadata],
fn=lambda *args, **kwargs: generate_and_update_history(*args, use_upscaler=True, **kwargs),
cache_examples=CACHE_EXAMPLES,
)
use_upscaler.change(
fn=lambda x: [gr.update(visible=x), gr.update(visible=x)],
inputs=use_upscaler,
outputs=[upscaler_strength, upscale_by],
queue=False,
api_name=False,
)
aspect_ratio_selector.change(
fn=lambda x: gr.update(visible=x == "Custom"),
inputs=aspect_ratio_selector,
outputs=custom_resolution,
queue=False,
api_name=False,
)
inputs = [
prompt,
negative_prompt,
seed,
custom_width,
custom_height,
guidance_scale,
num_inference_steps,
sampler,
aspect_ratio_selector,
use_upscaler,
upscaler_strength,
upscale_by,
json_input,
]
prompt.submit(
fn=utils.randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_and_update_history,
inputs=inputs,
outputs=[result, gr_metadata, history_gallery],
)
negative_prompt.submit(
fn=utils.randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_and_update_history,
inputs=inputs,
outputs=[result, gr_metadata, history_gallery],
)
run_button.click(
fn=utils.randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_and_update_history,
inputs=inputs,
outputs=[result, gr_metadata, history_gallery],
)
generate_from_json.click(
fn=generate_and_update_history,
inputs=inputs,
outputs=[result, gr_metadata, history_gallery],
)
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB) |