|
import os |
|
from collections.abc import Generator |
|
|
|
import pytest |
|
|
|
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta |
|
from core.model_runtime.entities.message_entities import AssistantPromptMessage, SystemPromptMessage, UserPromptMessage |
|
from core.model_runtime.errors.validate import CredentialsValidateFailedError |
|
from core.model_runtime.model_providers.bedrock.llm.llm import BedrockLargeLanguageModel |
|
|
|
|
|
def test_validate_credentials(): |
|
model = BedrockLargeLanguageModel() |
|
|
|
with pytest.raises(CredentialsValidateFailedError): |
|
model.validate_credentials(model="meta.llama2-13b-chat-v1", credentials={"anthropic_api_key": "invalid_key"}) |
|
|
|
model.validate_credentials( |
|
model="meta.llama2-13b-chat-v1", |
|
credentials={ |
|
"aws_region": os.getenv("AWS_REGION"), |
|
"aws_access_key": os.getenv("AWS_ACCESS_KEY"), |
|
"aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY"), |
|
}, |
|
) |
|
|
|
|
|
def test_invoke_model(): |
|
model = BedrockLargeLanguageModel() |
|
|
|
response = model.invoke( |
|
model="meta.llama2-13b-chat-v1", |
|
credentials={ |
|
"aws_region": os.getenv("AWS_REGION"), |
|
"aws_access_key": os.getenv("AWS_ACCESS_KEY"), |
|
"aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY"), |
|
}, |
|
prompt_messages=[ |
|
SystemPromptMessage( |
|
content="You are a helpful AI assistant.", |
|
), |
|
UserPromptMessage(content="Hello World!"), |
|
], |
|
model_parameters={"temperature": 0.0, "top_p": 1.0, "max_tokens_to_sample": 10}, |
|
stop=["How"], |
|
stream=False, |
|
user="abc-123", |
|
) |
|
|
|
assert isinstance(response, LLMResult) |
|
assert len(response.message.content) > 0 |
|
|
|
|
|
def test_invoke_stream_model(): |
|
model = BedrockLargeLanguageModel() |
|
|
|
response = model.invoke( |
|
model="meta.llama2-13b-chat-v1", |
|
credentials={ |
|
"aws_region": os.getenv("AWS_REGION"), |
|
"aws_access_key": os.getenv("AWS_ACCESS_KEY"), |
|
"aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY"), |
|
}, |
|
prompt_messages=[ |
|
SystemPromptMessage( |
|
content="You are a helpful AI assistant.", |
|
), |
|
UserPromptMessage(content="Hello World!"), |
|
], |
|
model_parameters={"temperature": 0.0, "max_tokens_to_sample": 100}, |
|
stream=True, |
|
user="abc-123", |
|
) |
|
|
|
assert isinstance(response, Generator) |
|
|
|
for chunk in response: |
|
print(chunk) |
|
assert isinstance(chunk, LLMResultChunk) |
|
assert isinstance(chunk.delta, LLMResultChunkDelta) |
|
assert isinstance(chunk.delta.message, AssistantPromptMessage) |
|
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True |
|
|
|
|
|
def test_get_num_tokens(): |
|
model = BedrockLargeLanguageModel() |
|
|
|
num_tokens = model.get_num_tokens( |
|
model="meta.llama2-13b-chat-v1", |
|
credentials={ |
|
"aws_region": os.getenv("AWS_REGION"), |
|
"aws_access_key": os.getenv("AWS_ACCESS_KEY"), |
|
"aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY"), |
|
}, |
|
messages=[ |
|
SystemPromptMessage( |
|
content="You are a helpful AI assistant.", |
|
), |
|
UserPromptMessage(content="Hello World!"), |
|
], |
|
) |
|
|
|
assert num_tokens == 18 |
|
|