File size: 9,441 Bytes
7576d10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5636b5c
 
588ce8d
7576d10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
555f068
3e8b98f
7576d10
 
 
3e8b98f
7576d10
 
 
 
 
 
 
 
 
 
588ce8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
555f068
3e8b98f
588ce8d
 
 
3e8b98f
588ce8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7576d10
 
5818bcb
b3cb6e3
 
 
7576d10
 
 
 
 
6454b14
7576d10
 
 
 
 
 
 
4809f98
7576d10
5636b5c
7576d10
 
5636b5c
7576d10
 
 
03ba546
 
 
 
 
c28e79f
588ce8d
021ea63
c28e79f
021ea63
c28e79f
 
 
 
 
 
 
 
 
 
 
 
021ea63
7576d10
 
 
5636b5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7576d10
5636b5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Check Pytorch installation
import torch, torchvision
print("torch version:",torch.__version__, "cuda:",torch.cuda.is_available())

# Check MMDetection installation
import mmdet
import os
import mmcv
import mmengine
from mmdet.apis import init_detector, inference_detector
from mmdet.utils import register_all_modules
from mmdet.registry import VISUALIZERS

from huggingface_hub import hf_hub_download
from huggingface_hub import snapshot_download
from time import time

classes = ['Beach',
 'Sea',
 'Wave',
 'Rock',
 'Breaking wave',
 'Reflection of the sea',
 'Foam',
 'Algae',
 'Vegetation',
 'Watermark',
 'Bird',
 'Ship',
 'Boat',
 'Car',
 'Kayak',
 "Shark's line",
 'Dock',
 'Dog',
 'Unidentifiable shade',
 'Bird shadow',
 'Boat shadow',
 'Kayal shade',
 'Surfer shadow',
 'Shark shadow',
 'Surfboard shadow',
 'Crocodile',
 'Sea cow',
 'Stingray',
 'Person',
 'ocean',
 'Surfer',
 'Surfer',
 'Fish',
 'Killer whale',
 'Whale',
 'Dolphin',
 'Miscellaneous',
 'Unidentifiable shark',
 'C Shark',
 'Dusty shark',
 'Blue shark',
 'Great white shark',
 'Shark',
 'Nurse shark',
 'Silky shark',
 'Leopard shark',
 'Shortfin mako shark',
 'Hammerhead shark',
 'Oceanic whitetip shark',
 'Blacktip shark',
 'Tiger shark',
 'Bull shark']*3

class_sizes = {'Beach': None,
               'Sea': None,
               'Wave': None,
               'Rock': None,
               'Breaking wave': None,
               'Reflection of the sea': None,
               'Foam': None,
               'Algae': None,
               'Vegetation': None,
               'Watermark': None,
               'Bird': {'feet':[1, 3], 'meter': [0.3, 0.9], 'kg': [0.5, 1.5], 'pounds': [1, 3]},
               'Ship': {'feet':[10, 100], 'meter': [3, 30], 'kg': [1000, 100000], 'pounds': [2200, 220000]},
               'Boat': {'feet':[10, 45], 'meter': [3, 15], 'kg': [750, 80000], 'pounds': [1500, 160000]},
               'Car': {'feet':[10, 20], 'meter': [3, 6], 'kg': [1000, 2000], 'pounds': [2200, 4400]},
               'Kayak': {'feet':[10, 20], 'meter': [3, 6], 'kg': [50, 300], 'pounds': [100, 600]},
               "Shark's line": None,
               'Dock': None,
               'Dog': {'feet':[1, 3], 'meter': [0.3, 0.9], 'kg': [10, 50], 'pounds': [20, 100]},
               'Unidentifiable shade': None,
               'Bird shadow': None,
               'Boat shadow': None,
               'Kayal shade': None,
               'Surfer shadow': None,
               'Shark shadow': None,
               'Surfboard shadow': None,
               'Crocodile': {'feet':[10, 20], 'meter': [3, 6], 'kg': [410, 1000], 'pounds': [900, 2200]},
               'Sea cow':  {'feet':[9,12], 'meter': [3, 4], 'kg': [400, 590], 'pounds': [900, 1300]},
               'Stingray': {'feet':[2, 7.5], 'meter': [0.6, 2.5], 'kg': [100, 300], 'pounds': [220, 770]},
               'Person': {'feet':[5, 7], 'meter': [1.5, 2.1], 'kg': [50, 150], 'pounds': [110, 300]},
               'Ocean': None,
               'Surfer': {'feet':[5, 7], 'meter': [1.5, 2.1], 'kg': [50, 150], 'pounds': [110, 300]},
               'Surfer': {'feet':[5, 7], 'meter': [1.5, 2.1], 'kg': [50, 150], 'pounds': [110, 300]},
               'Fish':  {'feet':[1, 3], 'meter': [0.3, 0.9], 'kg': [20, 150], 'pounds': [40, 300]},
               'Killer whale': {'feet':[10, 20], 'meter': [3, 6], 'kg': [3600, 5400], 'pounds': [8000, 12000]},
               'Whale': {'feet':[15, 30], 'meter': [4.5, 10], 'kg': [2500, 80000], 'pounds': [55000, 176000]},
               'Dolphin': {'feet':[6.6, 13.1], 'meter': [2, 4], 'kg': [150, 650], 'pounds': [330, 1430]},
               'Miscellaneous': None,
               'Unidentifiable shark': {'feet': [2, 15], 'meter': [0.6, 4.5], 'kg': [50, 1000], 'pounds': [110, 2200]},
               'C Shark': {'feet': [4, 10], 'meter': [1.25, 3], 'kg': [50, 1000], 'pounds': [110, 2200]}, # Prob incorrect
               'Dusty shark': {'feet': [9, 14], 'meter': [3, 4.25], 'kg': [160, 180], 'pounds': [350, 400]},
               'Blue shark': {'feet': [7.9, 12.5], 'meter': [2.4, 3], 'kg': [60, 120], 'pounds': [130, 260]}, 
               'Great white shark': {'feet': [13.1, 20], 'meter': [4, 6], 'kg': [680, 1800], 'pounds': [1500, 4000]},
               'Shark': {'feet': [7.2, 10.8], 'meter': [2.2, 3.3], 'kg': [130, 300], 'pounds': [290, 660]},
               'Nurse shark': {'feet': [7.9, 9.8], 'meter': [2.4, 3], 'kg': [90, 115], 'pounds': [200, 250]},
               'Silky shark': {'feet': [6.6, 8.2], 'meter': [2, 2.5], 'kg': [300, 380], 'pounds': [660, 840]},
               'Leopard shark': {'feet': [3.9, 4.9], 'meter': [1.2, 1.5], 'kg': [11, 20], 'pounds': [22, 44]},
               'Shortfin mako shark': {'feet': [10.5, 12], 'meter': [3.2, 3.6], 'kg': [60, 135], 'pounds': [130, 300]},
               'Hammerhead shark': {'feet': [4.9, 20], 'meter': [1.5, 6.1], 'kg': [230, 450], 'pounds': [500, 1000]},
               'Oceanic whitetip shark': {'feet': [5.9, 9.8], 'meter': [1.8, 3], 'kg': [36, 170], 'pounds': [80, 375]},
               'Blacktip shark': {'feet': [4.9, 6.6], 'meter': [1.5, 2], 'kg': [40, 100], 'pounds': [90, 220]},
               'Tiger shark': {'feet': [9.8, 18], 'meter': [3, 5.5], 'kg': [385, 635], 'pounds': [850, 1400]},
               'Bull shark': {'feet': [7.9, 11.2], 'meter': [2.4, 3.4], 'kg': [200, 315], 'pounds': [440, 690]},
}

class_sizes_lower = {k.lower(): v for k, v in class_sizes.items()}
   
classes_is_shark = [1 if 'shark' in x.lower() else 0 for x in classes]
classes_is_human = [1 if 'person' or 'surfer' in x.lower() else 0 for x in classes]
classes_is_unknown = [1 if 'unidentifiable' in x.lower() else 0 for x in classes]

classes_is_shark_id = [i for i, x in enumerate(classes_is_shark) if x == 1]
classes_is_human_id = [i for i, x in enumerate(classes_is_human) if x == 1]
classes_is_unknown_id = [i for i, x in enumerate(classes_is_unknown) if x == 1]


if not os.path.exists('model'):
    REPO_ID = "SharkSpace/maskformer_model"
    FILENAME = "mask2former"
    snapshot_download(repo_id=REPO_ID, token= os.environ.get('SHARK_MODEL'),local_dir='model/')

# Choose to use a config and initialize the detector
config_file ='model/mask2former_swin-t-p4-w7-224_8xb2-lsj-50e_coco-panoptic/mask2former_swin-t-p4-w7-224_8xb2-lsj-50e_coco-panoptic.py'
#'/content/mmdetection/configs/panoptic_fpn/panoptic-fpn_r50_fpn_ms-3x_coco.py'
# Setup a checkpoint file to load
checkpoint_file ='model/mask2former_swin-t-p4-w7-224_8xb2-lsj-50e_coco-panoptic/checkpoint_v2.pth'
# '/content/drive/MyDrive/Algorithms/weights/shark_panoptic_weights_16_4_23/panoptic-fpn_r50_fpn_ms-3x_coco/epoch_36.pth'

# register all modules in mmdet into the registries
register_all_modules()

# build the model from a config file and a checkpoint file
model = init_detector(config_file, checkpoint_file, device='cuda:0')  # or device='cuda:0'
model.dataset_meta['palette'] = model.dataset_meta['palette'] + model.dataset_meta['palette'][-23:]
model.dataset_meta['classes'] = classes
print(model.cfg.visualizer)
# init visualizer(run the block only once in jupyter notebook)
visualizer = VISUALIZERS.build(model.cfg.visualizer)
print(dir(visualizer))
# the dataset_meta is loaded from the checkpoint and
# then pass to the model in init_detector
visualizer.dataset_meta = model.dataset_meta
classes = visualizer.dataset_meta.get('classes', None)
palette = visualizer.dataset_meta.get('palette', None)

print(len(classes))
print(len(palette))
def inference_frame_serial(image, visualize = True):
    #start = time()
    result = inference_detector(model, image)
    #print(f'inference time: {time()-start}')
    # show the results
    if visualize:
        visualizer.add_datasample(
        'result',
        image,
        data_sample=result,
        draw_gt = None,
        show=False
        )
        frame = visualizer.get_image()
    else:
        frame = None
    return frame, result

def inference_frame(image):
    result = inference_detector(model, image)
    # show the results
    frames = []
    cnt=0
    
    for res in result:
        visualizer.add_datasample(
        'result',
        image[cnt],
        data_sample=res.numpy(),
        draw_gt = None,
        show=False
        )
        frame = visualizer.get_image()
        frames.append(frame)
        cnt+=1

    #frames = process_frames(result, image, visualizer)
    return frames

def inference_frame_par_ready(image):
    result = inference_detector(model, image)
    return [result[i].numpy() for i in range(len(result))]

def process_frame(in_tuple = (None, None, None)):
    visualizer.add_datasample(
        'result',
        in_tuple[1], #image,
        data_sample=in_tuple[0], #result
        draw_gt = None,
        show=False
        )
    
    #frame = visualizer.get_image()
    #print(in_tuple[2])
    return visualizer.get_image()

#def process_frame(frame):

# def process_frames(result, image, visualizer):
#     frames = []
#     lock = threading.Lock()

#     def process_data(cnt, res, img):
#         visualizer.add_datasample('result', img, data_sample=res, draw_gt=None, show=False)
#         frame = visualizer.get_image()
#         with lock:
#             frames.append(frame)

#     threads = []
#     for cnt, res in enumerate(result):
#         t = threading.Thread(target=process_data, args=(cnt, res, image[cnt]))
#         threads.append(t)
#         t.start()

#     for t in threads:
#         t.join()

#     return frames