File size: 3,915 Bytes
7576d10
d2aa7b7
f7db529
7576d10
ff9df39
 
 
 
 
 
cd0d6f2
eddda5a
7576d10
b73d81d
cd0d6f2
5bbee66
6e8c2ef
 
4d701c0
eddda5a
e213266
 
7576d10
8353801
cd0d6f2
 
8353801
 
02cdb95
8353801
 
cd0d6f2
8353801
02cdb95
7576d10
cd0d6f2
7576d10
 
 
 
 
 
cd0d6f2
 
 
 
7576d10
 
 
 
 
 
 
 
cd0d6f2
7576d10
 
 
 
 
cd0d6f2
7576d10
 
cd0d6f2
 
 
02cdb95
 
 
cd0d6f2
7576d10
 
 
 
 
 
 
 
 
 
cd0d6f2
02cdb95
cd0d6f2
 
02cdb95
7576d10
 
cd0d6f2
 
 
 
02cdb95
 
 
 
 
 
9f85afd
02cdb95
 
 
 
 
 
 
cd0d6f2
7576d10
cd0d6f2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import gradio as gr
import os 
import subprocess

from huggingface_hub import snapshot_download


REPO_ID='piperod91/videos_examples'
snapshot_download(repo_id=REPO_ID, token= os.environ.get('SHARK_MODEL'),repo_type='dataset',local_dir='videos_example')


if os.getenv('SYSTEM') == 'spaces':

    subprocess.call('pip install -U openmim'.split())
    subprocess.call('pip install python-dotenv'.split())
    subprocess.call('pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113'.split())
    subprocess.call('mim install mmcv>=2.0.0'.split())
    subprocess.call('mim install mmengine'.split())
    subprocess.call('mim install mmdet'.split())
    subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())
    subprocess.call('pip install git+https://github.com/cocodataset/panopticapi.git'.split())
    

import cv2 
import dotenv 
dotenv.load_dotenv()
import numpy as np
import gradio as gr
import glob
from inference import inference_frame
import os
import pathlib


def analize_video(x):
    print(x)
    path = '/tmp/test/'
    os.makedirs(path, exist_ok=True)
    videos = len(os.listdir(path))
    path = f'{path}{videos}'
    os.makedirs(path, exist_ok=True)
    outname = f'{path}_processed.mp4'
    if os.path.exists(outname):
        print('video already processed')
        return outname
    cap = cv2.VideoCapture(x)
    counter = 0
    while(cap.isOpened()):
        ret, frame = cap.read()
        if ret==True:
            name = os.path.join(path,f'{counter:05d}.png')
            frame = inference_frame(frame)
            # write the flipped frame
            cv2.imwrite(name, frame)
           
            counter +=1 
        else:
            break
    # Release everything if job is finished
    print(path)
    os.system(f'''ffmpeg -framerate 20 -pattern_type glob -i '{path}/*.png'  -c:v libx264 -pix_fmt yuv420p {outname} -y''')
    return outname

def set_example_image(example: list) -> dict:
    return gr.Video.update(value=example[0])

def show_video(example: list) -> dict:
    return gr.Video.update(value=example[0])
    

with gr.Blocks(title='Shark Patrol',theme=gr.themes.Soft(),live=True,) as demo:
    gr.Markdown("Initial DEMO.")
    with gr.Tab("Shark Detector"):
        with gr.Row():
            video_input = gr.Video(source='upload',include_audio=False)
            #video_input.style(witdh='50%',height='50%')
            video_output = gr.Video()
            #video_output.style(witdh='50%',height='50%')
        
        video_button = gr.Button("Analyze")
        with gr.Row():
            paths = sorted(pathlib.Path('videos_example/').rglob('*.mp4'))
            example_images = gr.Dataset(components=[video_input],
                                    samples=[[path.as_posix()]
                                             for path in paths if 'videos_side_by_side' not in str(path)])

    video_button.click(analize_video, inputs=video_input, outputs=video_output)

    example_images.click(fn=set_example_image,
                         inputs=example_images,
                         outputs=video_input)

    with gr.Accordion("Current Detections"):
        
        with gr.Row():
            video_example = gr.Video(source='upload',include_audio=False,stream=True)
        with gr.Row():
            paths = sorted(pathlib.Path('videos_example/').rglob('*rgb.mp4'))
            example_preds = gr.Dataset(components=[video_example],
                                    samples=[[path.as_posix()]
                                             for path in paths])
            example_preds.click(fn=show_video,
                         inputs=example_preds,
                         outputs=video_example)

 
demo.queue()
#if os.getenv('SYSTEM') == 'spaces':
demo.launch(width='40%',auth=(os.environ.get('SHARK_USERNAME'), os.environ.get('SHARK_PASSWORD')))