Spaces:
Runtime error
Runtime error
File size: 9,625 Bytes
7576d10 5636b5c 588ce8d 7576d10 d081c3f 7576d10 555f068 3e8b98f 7576d10 3e8b98f 9bc9c4c 7576d10 588ce8d 2f37c23 588ce8d 2f37c23 588ce8d 7576d10 a2d4eea 7576d10 9bc9c4c 7576d10 6454b14 7576d10 4809f98 7576d10 5636b5c 70b8d29 7576d10 27e0bee 5636b5c 7576d10 03ba546 70b8d29 c28e79f 588ce8d 021ea63 c28e79f 021ea63 c28e79f 70b8d29 c28e79f 70b8d29 c28e79f 021ea63 7576d10 5636b5c 27e0bee 5636b5c 7576d10 5636b5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
# Check Pytorch installation
import torch, torchvision
print("torch version:",torch.__version__, "cuda:",torch.cuda.is_available())
# Check MMDetection installation
import mmdet
import os
import mmcv
import mmengine
from mmdet.apis import init_detector, inference_detector
from mmdet.utils import register_all_modules
from mmdet.registry import VISUALIZERS
from huggingface_hub import hf_hub_download
from huggingface_hub import snapshot_download
from time import time
classes = ['Beach',
'Sea',
'Wave',
'Rock',
'Breaking wave',
'Reflection of the sea',
'Foam',
'Algae',
'Vegetation',
'Watermark',
'Bird',
'Ship',
'Boat',
'Car',
'Kayak',
"Shark's line",
'Dock',
'Dog',
'Unidentifiable shade',
'Bird shadow',
'Boat shadow',
'Kayal shade',
'Surfer shadow',
'Shark shadow',
'Surfboard shadow',
'Crocodile',
'Sea cow',
'Stingray',
'Person',
'ocean',
'Surfer',
'Surfer',
'Fish',
'Killer whale',
'Whale',
'Dolphin',
'Miscellaneous',
'Unidentifiable shark',
'C Shark',
'Dusty shark',
'Blue shark',
'Great white shark',
'Shark',
'N shark',
'S shark',
'Leopard shark',
'Shortfin mako shark',
'Hammerhead shark',
'Oceanic whitetip shark',
'Blacktip shark',
'Tiger shark',
'Bull shark']*3
class_sizes = {'Beach': None,
'Sea': None,
'Wave': None,
'Rock': None,
'Breaking wave': None,
'Reflection of the sea': None,
'Foam': None,
'Algae': None,
'Vegetation': None,
'Watermark': None,
'Bird': {'feet':[1, 3], 'meter': [0.3, 0.9], 'kg': [0.5, 1.5], 'pounds': [1, 3]},
'Ship': {'feet':[10, 100], 'meter': [3, 30], 'kg': [1000, 100000], 'pounds': [2200, 220000]},
'Boat': {'feet':[10, 45], 'meter': [3, 15], 'kg': [750, 80000], 'pounds': [1500, 160000]},
'Car': {'feet':[10, 20], 'meter': [3, 6], 'kg': [1000, 2000], 'pounds': [2200, 4400]},
'Kayak': {'feet':[10, 20], 'meter': [3, 6], 'kg': [50, 300], 'pounds': [100, 600]},
"Shark's line": None,
'Dock': None,
'Dog': {'feet':[1, 3], 'meter': [0.3, 0.9], 'kg': [10, 50], 'pounds': [20, 100]},
'Unidentifiable shade': None,
'Bird shadow': None,
'Boat shadow': None,
'Kayal shade': None,
'Surfer shadow': None,
'Shark shadow': None,
'Surfboard shadow': None,
'Crocodile': {'feet':[10, 20], 'meter': [3, 6], 'kg': [410, 1000], 'pounds': [900, 2200]},
'Sea cow': {'feet':[9,12], 'meter': [3, 4], 'kg': [400, 590], 'pounds': [900, 1300]},
'Stingray': {'feet':[2, 7.5], 'meter': [0.6, 2.5], 'kg': [100, 300], 'pounds': [220, 770]},
'Person': {'feet':[5, 7], 'meter': [1.5, 2.1], 'kg': [50, 150], 'pounds': [110, 300]},
'Ocean': None,
'Surfer': {'feet':[5, 7], 'meter': [1.5, 2.1], 'kg': [50, 150], 'pounds': [110, 300]},
'Surfer': {'feet':[5, 7], 'meter': [1.5, 2.1], 'kg': [50, 150], 'pounds': [110, 300]},
'Fish': {'feet':[1, 3], 'meter': [0.3, 0.9], 'kg': [20, 150], 'pounds': [40, 300]},
'Killer whale': {'feet':[10, 20], 'meter': [3, 6], 'kg': [3600, 5400], 'pounds': [8000, 12000]},
'Whale': {'feet':[15, 30], 'meter': [4.5, 10], 'kg': [2500, 80000], 'pounds': [55000, 176000]},
'Dolphin': {'feet':[6.6, 13.1], 'meter': [2, 4], 'kg': [150, 650], 'pounds': [330, 1430]},
'Miscellaneous': None,
'Unidentifiable shark': {'feet': [2, 15], 'meter': [0.6, 4.5], 'kg': [50, 1000], 'pounds': [110, 800]},
'C Shark': {'feet': [4, 10], 'meter': [1.25, 3], 'kg': [50, 1000], 'pounds': [110, 800]}, # Prob incorrect
'Dusty shark': {'feet': [9, 14], 'meter': [3, 4.25], 'kg': [160, 180], 'pounds': [350, 400]},
'Blue shark': {'feet': [7.9, 12.5], 'meter': [2.4, 3], 'kg': [60, 120], 'pounds': [130, 260]},
'Great white shark': {'feet': [13.1, 20], 'meter': [4, 6], 'kg': [680, 1800], 'pounds': [1500, 4000]},
'Shark':{'feet': [4, 10], 'meter': [1.25, 3], 'kg': [50, 1000], 'pounds': [110, 800]},# {'feet': [7.2, 10.8], 'meter': [2.2, 3.3], 'kg': [130, 300], 'pounds': [290, 660]},
'N shark': {'feet': [4, 10], 'meter': [1.25, 3], 'kg': [50, 1000], 'pounds': [110, 800]},#{'feet': [7.9, 9.8], 'meter': [2.4, 3], 'kg': [90, 115], 'pounds': [200, 250]},
'S shark': {'feet': [6.6, 8.2], 'meter': [2, 2.5], 'kg': [300, 380], 'pounds': [660, 840]},
'Leopard shark': {'feet': [3.9, 4.9], 'meter': [1.2, 1.5], 'kg': [11, 20], 'pounds': [22, 44]},
'Shortfin mako shark': {'feet': [10.5, 12], 'meter': [3.2, 3.6], 'kg': [60, 135], 'pounds': [130, 300]},
'Hammerhead shark': {'feet': [4.9, 20], 'meter': [1.5, 6.1], 'kg': [230, 450], 'pounds': [500, 1000]},
'Oceanic whitetip shark': {'feet': [5.9, 9.8], 'meter': [1.8, 3], 'kg': [36, 170], 'pounds': [80, 375]},
'Blacktip shark': {'feet': [4.9, 6.6], 'meter': [1.5, 2], 'kg': [40, 100], 'pounds': [90, 220]},
'Tiger shark': {'feet': [9.8, 18], 'meter': [3, 5.5], 'kg': [385, 635], 'pounds': [850, 1400]},
'Bull shark': {'feet': [7.9, 11.2], 'meter': [2.4, 3.4], 'kg': [200, 315], 'pounds': [440, 690]},
}
class_sizes_lower = {k.lower(): v for k, v in class_sizes.items()}
classes_is_shark = [1 if 'shark' in x.lower() else 0 for x in classes]
classes_is_human = [1 if 'person' or 'surfer' in x.lower() else 0 for x in classes]
classes_is_unknown = [1 if 'unidentifiable' in x.lower() else 0 for x in classes]
classes_is_shark_id = [i for i, x in enumerate(classes_is_shark) if x == 1]
classes_is_human_id = [i for i, x in enumerate(classes_is_human) if x == 1]
classes_is_unknown_id = [i for i, x in enumerate(classes_is_unknown) if x == 1]
#if not os.path.exists('model'):
REPO_ID = "SharkSpace/maskformer_model"
FILENAME = "mask2former"
snapshot_download(repo_id=REPO_ID, token= os.environ.get('SHARK_MODEL'),local_dir='model/')
# Choose to use a config and initialize the detectorN
config_file ='model/mask2former_swin-t-p4-w7-224_8xb2-lsj-50e_coco-panoptic/mask2former_swin-t-p4-w7-224_8xb2-lsj-50e_coco-panoptic.py'
#'/content/mmdetection/configs/panoptic_fpn/panoptic-fpn_r50_fpn_ms-3x_coco.py'
# Setup a checkpoint file to load
checkpoint_file ='model/mask2former_swin-t-p4-w7-224_8xb2-lsj-50e_coco-panoptic/checkpoint_v2.pth'
# '/content/drive/MyDrive/Algorithms/weights/shark_panoptic_weights_16_4_23/panoptic-fpn_r50_fpn_ms-3x_coco/epoch_36.pth'
# register all modules in mmdet into the registries
register_all_modules()
# build the model from a config file and a checkpoint file
model = init_detector(config_file, checkpoint_file, device='cuda:0') # or device='cuda:0'
model.dataset_meta['palette'] = model.dataset_meta['palette'] + model.dataset_meta['palette'][-23:]
model.dataset_meta['classes'] = classes
print(model.cfg.visualizer)
# init visualizer(run the block only once in jupyter notebook)
visualizer = VISUALIZERS.build(model.cfg.visualizer)
visualizer.img_save_dir ='temp'
print(dir(visualizer))
# the dataset_meta is loaded from the checkpoint and
# then pass to the model in init_detector
visualizer.dataset_meta = model.dataset_meta
classes = visualizer.dataset_meta.get('classes', None)
palette = visualizer.dataset_meta.get('palette', None)
print(len(classes))
print(len(palette))
def inference_frame_serial(image, visualize = True):
#start = time()
result = inference_detector(model, image)
#print(f'inference time: {time()-start}')
# show the results
if visualize:
visualizer.add_datasample(
'result',
image,
data_sample=result,
draw_gt = None,
show=False
)
frame = visualizer.get_image()
else:
frame = None
return frame, result
def inference_frame(image):
result = inference_detector(model, image)
# show the results
frames = []
cnt=0
for res in result:
visualizer.add_datasample(
'result',
image[cnt],
data_sample=res.numpy(),
draw_gt = None,
show=False,
)
frame = visualizer.get_image()
frames.append(frame)
cnt+=1
#frames = process_frames(result, image, visualizer)
return frames
def inference_frame_par_ready(image):
result = inference_detector(model, image)
return [result[i].numpy() for i in range(len(result))]
def process_frame(in_tuple = (None, None, None)):
visualizer.add_datasample(
'result',
in_tuple[1], #image,
data_sample=in_tuple[0], #result
draw_gt = None,
show=False
)
#frame = visualizer.get_image()
#print(in_tuple[2])
return visualizer.get_image()
#def process_frame(frame):
# def process_frames(result, image, visualizer):
# frames = []
# lock = threading.Lock()
# def process_data(cnt, res, img):
# visualizer.add_datasample('result', img, data_sample=res, draw_gt=None, show=False)
# frame = visualizer.get_image()
# with lock:
# frames.append(frame)
# threads = []
# for cnt, res in enumerate(result):
# t = threading.Thread(target=process_data, args=(cnt, res, image[cnt]))
# threads.append(t)
# t.start()
# for t in threads:
# t.join()
# return frames
|