Spaces:
Runtime error
Runtime error
import subprocess | |
import os | |
if os.getenv('SYSTEM') == 'spaces': | |
subprocess.call('pip install -U openmim'.split()) | |
subprocess.call('pip install python-dotenv'.split()) | |
subprocess.call('pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113'.split()) | |
subprocess.call('mim install mmcv>=2.0.0'.split()) | |
subprocess.call('mim install mmengine'.split()) | |
subprocess.call('mim install mmdet'.split()) | |
subprocess.call('pip install opencv-python-headless==4.5.5.64'.split()) | |
subprocess.call('pip install git+https://github.com/cocodataset/panopticapi.git'.split()) | |
import gradio as gr | |
from huggingface_hub import snapshot_download | |
import cv2 | |
import dotenv | |
dotenv.load_dotenv() | |
import numpy as np | |
import gradio as gr | |
import glob | |
from inference import inference_frame,inference_frame_serial | |
from inference import inference_frame_par_ready | |
from inference import process_frame | |
import os | |
import pathlib | |
import multiprocessing as mp | |
from time import time | |
REPO_ID='SharkSpace/videos_examples' | |
snapshot_download(repo_id=REPO_ID, token=os.environ.get('SHARK_MODEL'),repo_type='dataset',local_dir='videos_example') | |
def process_video(input_video): | |
cap = cv2.VideoCapture(input_video) | |
output_path = "output.mp4" | |
fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
video = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)) | |
iterating, frame = cap.read() | |
while iterating: | |
# flip frame vertically | |
display_frame = inference_frame_serial(frame) | |
video.write(frame) | |
yield display_frame, None | |
iterating, frame = cap.read() | |
video.release() | |
yield display_frame, output_path | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
input_video = gr.Video(label="input") | |
processed_frames = gr.Image(label="last frame") | |
output_video = gr.Video(label="output") | |
with gr.Row(): | |
paths = sorted(pathlib.Path('videos_example/').rglob('*.mp4')) | |
samples=[[path.as_posix()] for path in paths if 'raw_videos' in str(path)] | |
examples = gr.Examples(samples, inputs=input_video) | |
process_video_btn = gr.Button("process video") | |
process_video_btn.click(process_video, input_video, [processed_frames, output_video]) | |
demo.queue() | |
demo.launch() |