Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
from transformers import BertTokenizer, BertForSequenceClassification | |
import torch | |
from datasets import load_dataset | |
# Load pre-trained TinyBERT model and tokenizer | |
tokenizer = BertTokenizer.from_pretrained('huawei-noah/TinyBERT_General_4L_312D') | |
model = BertForSequenceClassification.from_pretrained('huawei-noah/TinyBERT_General_4L_312D') | |
# Load dataset from Hugging Face repository | |
# Replace 'your-username' and 'your-dataset-name' with actual values | |
dataset = load_dataset('SharmaAmit1818/data_analysis/blob/main', data_files='data-qQeu1Z0CfsuqRUaDagRA1 (1).csv') | |
# Function to process the CSV file and generate predictions | |
def process_csv(file): | |
try: | |
# Read the CSV file using Pandas directly from the uploaded file object | |
df = pd.read_csv(file) # Use the file object directly | |
# Debugging: Print the DataFrame shape and columns | |
print(f"DataFrame shape: {df.shape}") | |
print(f"DataFrame columns: {df.columns.tolist()}") | |
# Check for 'text' column | |
if 'text' not in df.columns: | |
return "Error: The CSV file must contain a 'text' column." | |
# Tokenize input text | |
inputs = tokenizer(df['text'].tolist(), return_tensors='pt', padding=True, truncation=True) | |
# Perform inference | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# Get predicted classes | |
_, predicted_classes = torch.max(outputs.logits, dim=1) | |
# Add predictions to DataFrame | |
df['predicted_class'] = predicted_classes.numpy() | |
# Return processed DataFrame as CSV string | |
return df.to_csv(index=False) | |
except FileNotFoundError: | |
return "Error: The specified file was not found. Please check your upload." | |
except pd.errors.EmptyDataError: | |
return "Error: The uploaded file is empty." | |
except pd.errors.ParserError: | |
return "Error: There was an issue parsing the CSV file." | |
except Exception as e: | |
return f"An unexpected error occurred: {str(e)}" | |
# Create Gradio interface | |
input_csv = gr.File(label="Upload CSV File") | |
output_csv = gr.File(label="Download Processed CSV") | |
demo = gr.Interface( | |
fn=process_csv, | |
inputs=input_csv, | |
outputs=output_csv, | |
title="CSV Data Processing with TinyBERT", | |
description="Upload a CSV file with a 'text' column, and the model will process the data and provide predictions." | |
) | |
# Launch Gradio interface | |
demo.launch() |