File size: 12,374 Bytes
a320d56
 
 
 
cca37b5
 
a320d56
 
 
9da0ae1
a320d56
 
 
 
 
 
 
9da0ae1
 
cca37b5
99b9f14
9ea3ea2
 
 
a320d56
9ea3ea2
99b9f14
2197c6b
 
 
a320d56
 
f3d2bf0
a320d56
2197c6b
 
52901ff
1929137
 
a86d9e9
 
 
 
52901ff
2197c6b
a86d9e9
2197c6b
 
52901ff
 
1929137
 
 
 
52901ff
 
a320d56
1929137
 
a320d56
1929137
cca37b5
1929137
 
a320d56
cca37b5
 
 
 
 
 
 
 
 
a320d56
9ea3ea2
 
a320d56
 
a86d9e9
1929137
a320d56
e91fa65
9ea3ea2
 
e91fa65
a320d56
a86d9e9
 
2197c6b
 
 
9ea3ea2
a320d56
9ea3ea2
 
9da0ae1
9ea3ea2
a320d56
9ea3ea2
 
a320d56
9da0ae1
a320d56
cca37b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9da0ae1
cca37b5
 
 
9da0ae1
cca37b5
 
 
 
 
 
9ea3ea2
9da0ae1
a320d56
cca37b5
9da0ae1
cca37b5
a320d56
 
cca37b5
52901ff
a320d56
 
 
 
 
 
 
e91fa65
 
 
 
 
 
 
 
 
 
 
 
2197c6b
 
e91fa65
9da0ae1
 
a320d56
cca37b5
 
 
9da0ae1
 
 
 
 
a320d56
cca37b5
9da0ae1
 
 
 
 
 
 
 
e91fa65
 
cca37b5
e91fa65
cca37b5
 
e91fa65
cca37b5
 
 
 
 
 
 
 
 
 
 
 
 
 
9da0ae1
 
 
 
cca37b5
9da0ae1
 
 
 
 
 
 
 
 
 
 
cca37b5
9da0ae1
2197c6b
 
 
 
1929137
2197c6b
 
cca37b5
2197c6b
 
cca37b5
 
9da0ae1
a320d56
a86d9e9
a320d56
 
9da0ae1
2197c6b
9ea3ea2
52901ff
a86d9e9
52901ff
 
 
 
 
 
 
2197c6b
52901ff
a320d56
1929137
a320d56
 
 
cca37b5
 
 
 
 
 
 
 
 
 
 
 
a320d56
 
 
 
 
cca37b5
a320d56
cca37b5
e91fa65
 
a320d56
 
 
 
2197c6b
 
a320d56
 
 
 
9ea3ea2
 
 
 
 
 
 
 
 
 
 
cca37b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a320d56
9ea3ea2
 
a320d56
9da0ae1
 
 
 
 
cca37b5
 
 
9da0ae1
a320d56
9da0ae1
a320d56
 
2197c6b
 
 
a320d56
1929137
 
 
e91fa65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import gradio as gr
import random
import time

from langchain import PromptTemplate
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Pinecone
from langchain.chains import LLMChain
from langchain.chains.retrieval_qa.base import RetrievalQA
from langchain.chains.question_answering import load_qa_chain
import pinecone

import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"

#OPENAI_API_KEY = ""
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "")
OPENAI_TEMP  = 1

PINECONE_KEY = os.environ.get("PINECONE_KEY", "")
PINECONE_ENV = os.environ.get("PINECONE_ENV", "asia-northeast1-gcp")
PINECONE_INDEX = os.environ.get("PINECONE_INDEX", "3gpp")

EMBEDDING_MODEL = os.environ.get("PINECONE_INDEX", "sentence-transformers/all-mpnet-base-v2")

# return top-k text chunks from vector store
TOP_K_DEFAULT = 10
TOP_K_MAX = 25


BUTTON_MIN_WIDTH = 210

STATUS_NOK = "404-MODEL UNREADY-critical"
STATUS_OK  = "200-MODEL LOADED-9cf"

FORK_BADGE = "Fork-HuggingFace Space-9cf"


def get_logo(inputs, logo) -> str:
    return f"""https://img.shields.io/badge/{inputs}?style=flat&logo={logo}&logoColor=white"""

def get_status(inputs) -> str:
    return f"""<img
    src   = "{get_logo(inputs, "openai")}";
    style = "margin: 0 auto;"
    >"""
    

KEY_INIT   = "Initialize Model"
KEY_SUBMIT = "Submit"
KEY_CLEAR  = "Clear"

MODEL_NULL = get_status(STATUS_NOK)
MODEL_DONE = get_status(STATUS_OK)

MODEL_WARNING = f"Please paste your OpenAI API Key from \
[openai.com](https://platform.openai.com/account/api-keys) and then **{KEY_INIT}**"


TAB_1 = "Chatbot"

FAVICON = './icon.svg'

LLM_LIST = ["gpt-3.5-turbo", "text-davinci-003"]


DOC_1 = '3GPP'
DOC_2 = 'HTTP2'

DOC_SUPPORTED = [DOC_1, DOC_2]
DOC_DEFAULT = [DOC_1]

webui_title = """
# OpenAI Chatbot Based on Vector Database
## Example of 3GPP
"""

dup_link = f'''<a href="https://huggingface.co/spaces/ShawnAI/3GPP-ChatBot?duplicate=true">
<img src="{get_logo(FORK_BADGE, "addthis")}"></a> '''

init_message = f"""Welcome to use 3GPP Chatbot, this demo toolkit is based on OpenAI with LangChain and Pinecone
    1. Insert your OpenAI API key and click  `{KEY_INIT}`
    2. Insert your Question and click  `{KEY_SUBMIT}`
"""



#----------------------------------------------------------------------------------------------------------
#----------------------------------------------------------------------------------------------------------

def init_model(api_key, emb_name, db_api_key, db_env, db_index):
    try:
        if (api_key and api_key.startswith("sk-") and len(api_key) > 50) and \
        (emb_name and db_api_key and db_env and db_index):
            
            embeddings = HuggingFaceEmbeddings(model_name=emb_name)

            pinecone.init(api_key     = db_api_key,
                          environment = db_env)

            #llm = OpenAI(temperature=OPENAI_TEMP, model_name="gpt-3.5-turbo-0301")

            
            llm_dict = {}
            for llm_name in LLM_LIST:
                if llm_name == "gpt-3.5-turbo":
                    llm_dict[llm_name] = ChatOpenAI(model_name=llm_name,
                                                    temperature = OPENAI_TEMP,
                                                    openai_api_key = api_key)
                else:
                    llm_dict[llm_name] = OpenAI(model_name=llm_name,
                                                temperature = OPENAI_TEMP,
                                                openai_api_key = api_key)

            '''
            ChatOpenAI(model_name="gpt-3.5-turbo",
                             temperature = OPENAI_TEMP,
                             openai_api_key = api_key)
            chain_1 = load_qa_chain(llm, chain_type="stuff")
            
            #LLMChain(llm=llm, prompt=condense_question_prompt)

            chain_2 = LLMChain(llm = llm,
                             prompt = PromptTemplate(template='{question}',
                                                     input_variables=['question']),
                             output_key = 'output_text')
                             '''
            
            db = Pinecone.from_existing_index(index_name = db_index,
                                              embedding  = embeddings)

            return api_key, MODEL_DONE, llm_dict, None, db, None
        else:
            return None,MODEL_NULL,None,None,None,None
    except Exception as e:
        print(e)
        return None,MODEL_NULL,None,None,None,None


def get_chat_history(inputs) -> str:
    res = []
    for human, ai in inputs:
        res.append(f"Human: {human}\nAI: {ai}")
    return "\n".join(res)

def remove_duplicates(documents):
    seen_content = set()
    unique_documents = []
    for doc in documents:
        if doc.page_content not in seen_content:
            seen_content.add(doc.page_content)
            unique_documents.append(doc)
    return unique_documents

def doc_similarity(query, db, top_k):
    docsearch = db.as_retriever(search_kwargs={'k':top_k})
    docs = docsearch.get_relevant_documents(query)
    udocs = remove_duplicates(docs)
    return udocs

def user(user_message, history):
    return "", history+[[user_message, None]]

def bot(box_message, ref_message,
        llm_dropdown, llm_dict, doc_list,
        db, top_k):

    # bot_message = random.choice(["Yes", "No"])
    # 0 is user question, 1 is bot response
    question = box_message[-1][0]
    history  = box_message[:-1]
    
    if (not llm_dict) or (not doc_check) or (not db):
        box_message[-1][1] = MODEL_WARNING
        return box_message, "", ""

    if not ref_message:
        ref_message = question
        details = f"Q:  {question}"
    else:
        details = f"Q:  {question}\nR: {ref_message}"
        
        
    llm = llm_dict[llm_dropdown]
    
    print(llm)
    print(doc_list)
    
    if DOC_1 in doc_list:
        chain = load_qa_chain(llm, chain_type="stuff")
        docs = doc_similarity(ref_message, db, top_k)
        delta_top_k = top_k - len(docs)

        if delta_top_k > 0:
            docs = doc_similarity(ref_message, db, top_k+delta_top_k)
            
    else:
        chain = LLMChain(llm = llm,
                         prompt = PromptTemplate(template='{question}',
                                                input_variables=['question']),
                         output_key = 'output_text')
        docs = []

    all_output = chain({"input_documents": docs,
                        "question": question,
                        "chat_history": get_chat_history(history)})
    
    bot_message = all_output['output_text']


    source = "".join([f"""<details> <summary>{doc.metadata["source"]}</summary>
{doc.page_content}

</details>""" for i, doc in enumerate(docs)])

    #print(source)

    box_message[-1][1] = bot_message
    return box_message, "", [[details, bot_message + source]]

#----------------------------------------------------------------------------------------------------------
#----------------------------------------------------------------------------------------------------------

with gr.Blocks(
    title = TAB_1,
    theme = "Base",
    css = """.bigbox {
    min-height:250px;
}
""") as demo:
    llm = gr.State()
    chain_2 = gr.State() # not inuse
    vector_db = gr.State()
    gr.Markdown(webui_title)
    gr.HTML(dup_link)
    gr.Markdown(init_message)
    
    with gr.Row():
        with gr.Column(scale=10):
            llm_api_textbox = gr.Textbox(
                label = "OpenAI API Key",
                # show_label = False,
                value = OPENAI_API_KEY,
                placeholder = "Paste Your OpenAI API Key (sk-...) and Hit ENTER",
                lines=1,
                type='password')
            
        with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):
            
            init = gr.Button(KEY_INIT) #.style(full_width=False)
            model_statusbox = gr.HTML(MODEL_NULL)
    
    with gr.Tab(TAB_1):
        with gr.Row():
            with gr.Column(scale=10):
                chatbot = gr.Chatbot(elem_classes="bigbox")
            #with gr.Column(scale=1):
            with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):
                doc_check = gr.CheckboxGroup(choices = DOC_SUPPORTED,
                                             value   = DOC_DEFAULT,
                                             label   = "Reference Docs",
                                             interactive=True)
                llm_dropdown = gr.Dropdown(LLM_LIST,
                                           value=LLM_LIST[0],
                                           multiselect=False,
                                           interactive=True,
                                           label="LLM Selection",
                                           )
        with gr.Row():
            with gr.Column(scale=10):
                query = gr.Textbox(label="Question:",
                                   lines=2)
                ref = gr.Textbox(label="Reference(optional):")

            with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):

                clear = gr.Button(KEY_CLEAR)
                submit = gr.Button(KEY_SUBMIT,variant="primary")
                

    with gr.Tab("Details"):
        top_k = gr.Slider(1,
                          TOP_K_MAX,
                          value=TOP_K_DEFAULT,
                          step=1,
                          label="Vector similarity top_k",
                          interactive=True)
        detail_panel = gr.Chatbot(label="Related Docs")
    
    with gr.Tab("Database"):
        with gr.Row():
            emb_textbox = gr.Textbox(
                label = "Embedding Model",
                # show_label = False,
                value = EMBEDDING_MODEL,
                placeholder = "Paste Your Embedding Model Repo on HuggingFace",
                lines=1,
                interactive=True,
                type='email')
        with gr.Accordion("Pinecone Database for "+DOC_1):
            with gr.Row():
                db_api_textbox = gr.Textbox(
                    label = "Pinecone API Key",
                    # show_label = False,
                    value = PINECONE_KEY,
                    placeholder = "Paste Your Pinecone API Key (xx-xx-xx-xx-xx) and Hit ENTER",
                    lines=1,
                    interactive=True,
                    type='password')
            with gr.Row():
                db_env_textbox = gr.Textbox(
                    label = "Pinecone Environment",
                    # show_label = False,
                    value = PINECONE_ENV,
                    placeholder = "Paste Your Pinecone Environment (xx-xx-xx) and Hit ENTER",
                    lines=1,
                    interactive=True,
                    type='email')
                db_index_textbox = gr.Textbox(
                    label = "Pinecone Index",
                    # show_label = False,
                    value = PINECONE_INDEX,
                    placeholder = "Paste Your Pinecone Index (xxxx) and Hit ENTER",
                    lines=1,
                    interactive=True,
                    type='email')

    init_input  = [llm_api_textbox, emb_textbox, db_api_textbox, db_env_textbox, db_index_textbox]
    init_output = [llm_api_textbox, model_statusbox,
                   llm, chain_2,
                   vector_db, chatbot]
                
    llm_api_textbox.submit(init_model, init_input, init_output)
    init.click(init_model, init_input, init_output)
    
    submit.click(user,
                 [query, chatbot],
                 [query, chatbot],
                 queue=False).then(
        bot,
        [chatbot, ref,
         llm_dropdown, llm, doc_check,
         vector_db, top_k],
        [chatbot, ref, detail_panel]
    )
    
    clear.click(lambda: (None,None,None), None, [query, ref, chatbot], queue=False)

#----------------------------------------------------------------------------------------------------------
#----------------------------------------------------------------------------------------------------------
    
if __name__ == "__main__":
    demo.launch(share        = False,
                inbrowser    = True,
                favicon_path = FAVICON)