ProtonDataLabs's picture
Update app.py
ba7f8df unverified
raw
history blame
31.5 kB
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.dates as mdates
import plotly.express as px
import plotly.graph_objects as go
import re
from datetime import datetime, timedelta
import warnings
import time
import dask.dataframe as dd
state_to_region = {
# WEST
'AK': 'WEST', 'CA': 'WEST', 'CO': 'WEST', 'HI': 'WEST', 'ID': 'WEST',
'MT': 'WEST', 'NV': 'WEST', 'OR': 'WEST', 'UT': 'WEST', 'WA': 'WEST', 'WY': 'WEST',
# SOUTHWEST
'AZ': 'SOUTHWEST', 'NM': 'SOUTHWEST', 'OK': 'SOUTHWEST', 'TX': 'SOUTHWEST',
# MIDWEST
'IL': 'MIDWEST', 'IN': 'MIDWEST', 'IA': 'MIDWEST', 'KS': 'MIDWEST', 'MI': 'MIDWEST',
'MN': 'MIDWEST', 'MO': 'MIDWEST', 'NE': 'MIDWEST', 'ND': 'MIDWEST', 'OH': 'MIDWEST',
'SD': 'MIDWEST', 'WI': 'MIDWEST',
# SOUTHEAST
'AL': 'SOUTHEAST', 'AR': 'SOUTHEAST', 'DE': 'SOUTHEAST', 'FL': 'SOUTHEAST',
'GA': 'SOUTHEAST', 'KY': 'SOUTHEAST', 'LA': 'SOUTHEAST', 'MD': 'SOUTHEAST',
'MS': 'SOUTHEAST', 'NC': 'SOUTHEAST', 'SC': 'SOUTHEAST', 'TN': 'SOUTHEAST',
'VA': 'SOUTHEAST', 'WV': 'SOUTHEAST',
# NORTHEAST
'CT': 'NORTHEAST', 'ME': 'NORTHEAST', 'MA': 'NORTHEAST', 'NH': 'NORTHEAST',
'NJ': 'NORTHEAST', 'NY': 'NORTHEAST', 'PA': 'NORTHEAST', 'RI': 'NORTHEAST',
'VT': 'NORTHEAST'
}
@st.cache_data
def date_from_week(year, week):
# Assuming the fiscal year starts in August and the week starts from August 1st
base_date = pd.to_datetime((year - 1).astype(str) + '-08-01')
dates = base_date + pd.to_timedelta((week - 1) * 7, unit='days')
return dates
@st.cache_data
def load_data(active_card):
# st.write(f"{active_card}")
# Define columns common to multiple cards if there are any
common_cols = ['FyWeek', 'Itemtype', 'Chaincode', 'State', 'SalesVolume', 'UnitPrice', 'Sales']
# Columns specific to cards
card_specific_cols = {
'card1': ['FyWeek', 'Fy', 'State','Store','Address','Zipcode','City','Itemtype', 'Chaincode', 'Containercode', 'SalesVolume', 'UnitPrice', 'Sales'],
# 'card2': ['FyWeek', 'Fy', 'State','Store','Address','Zipcode','City','Itemtype', 'Chaincode', 'Containercode', 'SalesVolume', 'UnitPrice', 'Sales'],
'card3': ['FyWeek', 'Fy', 'State','Store','Address','Zipcode','City','Itemtype', 'Chaincode', 'Containercode', 'SalesVolume', 'UnitPrice', 'Sales'] # Added for PE calculation card
}
# Choose columns based on the active card
required_columns = card_specific_cols.get(active_card, common_cols)
# Define the data types for efficient memory usage
dtype_spec = {
'FyWeek': 'string',
'Fy': 'category', # Add data type for 'Fy' if it's used
'Itemtype': 'category',
'Chaincode': 'category',
'State': 'category',
"Store": "category",
'Containercode': 'category',
"Address": "string",
"Zipcode": "float",
"City": "category",
'SalesVolume': 'float',
'UnitPrice': 'float',
'Sales': 'float'
}
# Read only the necessary columns
# st.write(required_columns)
ddf = dd.read_csv("fy21-24.csv", usecols=required_columns, dtype=dtype_spec)
df = ddf.compute()
# st.write("+++++++++++++++++++++++")
if active_card in ['card1','card2', 'card3',]:
df = df.groupby(['FyWeek', 'Fy', 'Chaincode', 'Store', 'Address', 'Zipcode', 'City', 'State', 'Containercode', 'Itemtype'], observed=True).agg({
'SalesVolume': 'sum',
'UnitPrice': 'mean',
'Sales': 'sum'
}).reset_index()
df[['FY', 'Week']] = df['FyWeek'].str.split(' Week ', expand=True)
df['Week'] = df['Week'].astype(int) # Convert 'Week' to int
df['Year'] = df['FY'].str[2:].astype(int) # Extract year part and convert to int
df['Dt'] = date_from_week(df['Year'], df['Week'])
# Add the region column based on state
df['Region'] = df['State'].map(state_to_region)
return df
# Display logo
st.image("bonnie.png", width=150) # Adjust width as needed
# Display title
# st.title("Price vs. Sales Volume Tracker Dashboard")
# Initialize session state for storing which card was clicked and item type
if 'active_card' not in st.session_state:
st.session_state['active_card'] = None
if 'selected_item_type' not in st.session_state:
st.session_state['selected_item_type'] = 'CORE' # Set default to 'CORE'
if 'selected_feature' not in st.session_state:
st.session_state['selected_feature'] = 'Chaincode' # Default to 'Chain Code'
# Card selection buttons with logic to reset session state on switch
col1, col3 = st.columns(2)
with col1:
if st.button("Sales Volume Trend"):
st.session_state['active_card'] = 'card1'
# Reset other selections when switching cards
st.session_state['selected_state'] = None
st.session_state['selected_chaincode'] = None
st.session_state['selected_itemtype'] = None
st.session_state['selected_containercode'] = None
# with col2:
# if st.button("Sales Volume vs Median Unit Price Trend"):
# st.session_state['active_card'] = 'card2'
# # Reset selections when switching cards
# st.session_state['selected_state'] = None
# st.session_state['selected_chaincode'] = None
# st.session_state['selected_itemtype'] = None
# st.session_state['selected_containercode'] = None
with col3:
if st.button("Price Elasticity Coefficient Trend YoY"):
st.session_state['active_card'] = 'card3'
# Reset selections when switching cards
st.session_state['selected_state'] = None
st.session_state['selected_chaincode'] = None
st.session_state['selected_itemtype'] = None
st.session_state['selected_containercode'] = None
# Load data for the current card
start_time = time.time()
df = load_data(st.session_state['active_card'])
time_taken = time.time() - start_time
st.write(f"Data loaded in {time_taken:.2f} seconds")
############################################ CARD #1 ####################################################
if st.session_state['active_card'] == 'card1':
# Step 1: Sales Volume vs FyWeek for the whole dataset (no filter)
st.subheader("Total Sales Volume by Fiscal Week")
df['FY_Week'] = df['FY'].astype(str) + '_' + df['Week'].astype(str)
# Split FY_Week again for correct sorting
if not df.empty and 'FY_Week' in df.columns:
total_sales_df = df.groupby('FY_Week', observed=True)['SalesVolume'].sum().reset_index()
total_sales_df[['FY', 'Week']] = total_sales_df['FY_Week'].str.split('_', expand=True)
total_sales_df['Week'] = total_sales_df['Week'].astype(int)
total_sales_df = total_sales_df.sort_values(by=['FY', 'Week'])
# Create a line chart using Plotly
fig = px.line(total_sales_df, x='FY_Week', y='SalesVolume',
labels={'SalesVolume': 'Sales Volume', 'FY_Week': 'Fiscal Week'})
st.plotly_chart(fig)
# Step 2: Top 3 states based on sales volume as buttons/cards
top_states = df.groupby('State', observed=True)['SalesVolume'].sum().nlargest(3).index
st.write("### Top 3 Selling States in the last 4 years (drill down by state)")
col1, col2, col3 = st.columns(3)
if len(top_states) > 0 and col1.button(top_states[0]):
st.session_state['selected_state'] = top_states[0]
if len(top_states) > 1 and col2.button(top_states[1]):
st.session_state['selected_state'] = top_states[1]
if len(top_states) > 2 and col3.button(top_states[2]):
st.session_state['selected_state'] = top_states[2]
# If a state is selected, show the corresponding plot
if 'selected_state' in st.session_state and st.session_state['selected_state']:
selected_state = st.session_state['selected_state']
# Step 3: Sales volume vs FyWeek for the selected state
st.subheader(f"Sales Volume by Fiscal Week for {selected_state} (drill down by Chaincode) ")
state_sales_df = df[df['State'] == selected_state].groupby('FY_Week', observed=True)['SalesVolume'].sum().reset_index()
if not state_sales_df.empty and 'FY_Week' in state_sales_df.columns:
state_sales_df[['FY', 'Week']] = state_sales_df['FY_Week'].str.split('_', expand=True)
state_sales_df['Week'] = state_sales_df['Week'].astype(int)
state_sales_df = state_sales_df.sort_values(by=['FY', 'Week'])
fig = px.line(state_sales_df, x='FY_Week', y='SalesVolume',
labels={'SalesVolume': 'Sales Volume', 'FY_Week': 'Fiscal Week'})
st.plotly_chart(fig)
# Step 4: Top 3 chaincodes based on sales volume as buttons/cards
top_chaincodes = df[df['State'] == selected_state].groupby('Chaincode', observed=True)['SalesVolume'].sum().nlargest(3).index
st.write(f"### Top 3 selling Chaincode in {selected_state}:")
# Add a check to ensure top_chaincodes has values before accessing
col1, col2, col3 = st.columns(3)
if len(top_chaincodes) > 0 and col1.button(top_chaincodes[0]):
st.session_state['selected_chaincode'] = top_chaincodes[0]
if len(top_chaincodes) > 1 and col2.button(top_chaincodes[1]):
st.session_state['selected_chaincode'] = top_chaincodes[1]
if len(top_chaincodes) > 2 and col3.button(top_chaincodes[2]):
st.session_state['selected_chaincode'] = top_chaincodes[2]
# If a chaincode is selected, show the corresponding plot
if 'selected_chaincode' in st.session_state:
selected_chaincode = st.session_state['selected_chaincode']
# Step 5: Sales volume vs FyWeek for the selected chaincode in the selected state
st.subheader(f"Sales Volume by Fiscal Week for {selected_chaincode} in {selected_state}")
chain_sales_df = df[(df['State'] == selected_state) & (df['Chaincode'] == selected_chaincode)].groupby('FY_Week', observed=True)['SalesVolume'].sum().reset_index()
if not chain_sales_df.empty and 'FY_Week' in chain_sales_df.columns:
chain_sales_df[['FY', 'Week']] = chain_sales_df['FY_Week'].str.split('_', expand=True)
chain_sales_df['Week'] = chain_sales_df['Week'].astype(int)
chain_sales_df = chain_sales_df.sort_values(by=['FY', 'Week'])
fig = px.line(chain_sales_df, x='FY_Week', y='SalesVolume',
# title=f'Sales Volume vs Fiscal Week in {selected_chaincode}, {selected_state}',
labels={'SalesVolume': 'Sales Volume', 'FY_Week': 'Fiscal Week'})
st.plotly_chart(fig)
# Step 6: Top 3 itemtypes based on sales volume as buttons/cards
top_itemtypes = df[(df['State'] == selected_state) & (df['Chaincode'] == selected_chaincode)].groupby('Itemtype', observed=True)['SalesVolume'].sum().nlargest(3).index
st.write(f"### Top Item Type in {selected_chaincode}, {selected_state} (drill down by ItemType) :")
col1, col2, col3 = st.columns(3)
if len(top_itemtypes) > 0 and col1.button(top_itemtypes[0]):
st.session_state['selected_itemtype'] = top_itemtypes[0]
if len(top_itemtypes) > 1 and col2.button(top_itemtypes[1]):
st.session_state['selected_itemtype'] = top_itemtypes[1]
if len(top_itemtypes) > 2 and col3.button(top_itemtypes[2]):
st.session_state['selected_itemtype'] = top_itemtypes[2]
# If an itemtype is selected, show the corresponding dual-axis plot for Sales Volume & Unit Price
if 'selected_itemtype' in st.session_state:
selected_itemtype = st.session_state['selected_itemtype']
# Step 7: Dual-axis plot for Sales volume and UnitPrice vs FyWeek for the selected itemtype
# st.subheader(f"Sales Volume & Unit Price vs Fiscal Week for {selected_itemtype} in {selected_chaincode}, {selected_state}")
item_sales_df = df[(df['State'] == selected_state) & (df['Chaincode'] == selected_chaincode) & (df['Itemtype'] == selected_itemtype)].groupby('FY_Week', observed=True).agg({
'SalesVolume': 'sum',
'UnitPrice': 'mean'
}).reset_index()
if not item_sales_df.empty and 'FY_Week' in item_sales_df.columns:
item_sales_df[['FY', 'Week']] = item_sales_df['FY_Week'].str.split('_', expand=True)
item_sales_df['Week'] = item_sales_df['Week'].astype(int)
item_sales_df = item_sales_df.sort_values(by=['FY', 'Week'])
# Dual-axis plot using Plotly Graph Objects
fig = go.Figure()
# Add SalesVolume trace
fig.add_trace(go.Scatter(
x=item_sales_df['FY_Week'],
y=item_sales_df['SalesVolume'],
mode='lines+markers',
name='SalesVolume',
line=dict(color='blue'),
hovertemplate='SalesVolume: %{y}<br>Week-Year: %{x}'
))
# Add UnitPrice trace with secondary Y-axis
fig.add_trace(go.Scatter(
x=item_sales_df['FY_Week'],
y=item_sales_df['UnitPrice'],
mode='lines+markers',
name='UnitPrice',
line=dict(color='green'),
yaxis='y2',
hovertemplate='UnitPrice: %{y}<br>Week-Year: %{x}'
))
# Update layout for dual axes
fig.update_layout(
title=f"Sales Volume vs Unit Price by Fiscal Week for {selected_itemtype}, {selected_chaincode}, {selected_state}",
xaxis_title='Fiscal Week',
yaxis_title='Sales Volume',
yaxis2=dict(title='Unit Price', overlaying='y', side='right'),
legend=dict(x=0.9, y=1.15),
hovermode="x unified", # Show both values in a tooltip
height=600,
margin=dict(l=50, r=50, t=50, b=50)
)
# Rotate X-axis labels
fig.update_xaxes(tickangle=90)
# Display the Plotly figure in Streamlit
st.plotly_chart(fig, use_container_width=True)
# Step 8: Display Top/Bottom Container Codes and Stores
st.subheader("Top & Bottom 3 Container Codes and Stores")
# Get top and bottom 3 container codes based on SalesVolume
top_containercodes = df[(df['State'] == selected_state) & (df['Chaincode'] == selected_chaincode) & (df['Itemtype'] == selected_itemtype)].groupby('Containercode', observed=True)['SalesVolume'].sum().nlargest(3).reset_index()
bottom_containercodes = df[(df['State'] == selected_state) & (df['Chaincode'] == selected_chaincode) & (df['Itemtype'] == selected_itemtype)].groupby('Containercode', observed=True)['SalesVolume'].sum().nsmallest(3).reset_index()
# Get top and bottom 3 stores based on SalesVolume
top_stores = df[(df['State'] == selected_state) & (df['Chaincode'] == selected_chaincode) & (df['Itemtype'] == selected_itemtype)].groupby('Store', observed=True)['SalesVolume'].sum().nlargest(3).reset_index()
bottom_stores = df[(df['State'] == selected_state) & (df['Chaincode'] == selected_chaincode) & (df['Itemtype'] == selected_itemtype)].groupby('Store', observed=True)['SalesVolume'].sum().nsmallest(3).reset_index()
# Display top and bottom container codes side by side
st.write("### Container Codes:")
col1, col2 = st.columns(2)
with col1:
st.write("#### Top 3 Container Codes")
st.dataframe(top_containercodes)
with col2:
st.write("#### Bottom 3 Container Codes")
st.dataframe(bottom_containercodes)
# Display top and bottom stores side by side
st.write("### Stores:")
col3, col4 = st.columns(2)
with col3:
st.write("#### Top 3 Stores")
st.dataframe(top_stores)
with col4:
st.write("#### Bottom 3 Stores")
st.dataframe(bottom_stores)
##########################################################################################################
########################################### CARD #2 ####################################################
# if st.session_state['active_card'] == 'card2':
# # Identify the top 10 Itemtypes based on total SalesVolume
# top_10_itemtypes = df.groupby('Itemtype')['SalesVolume'].sum().nlargest(10).index
# # Filter the DataFrame to include only the top 10 Itemtypes
# df = df[df['Itemtype'].isin(top_10_itemtypes)]
# # Dropdown to select item type (using session_state)
# st.session_state['selected_item_type'] = st.selectbox(
# 'Select Item Type', df['Itemtype'].unique(),
# index=list(df['Itemtype'].unique()).index(st.session_state['selected_item_type']))
# # Dropdown to select the grouping category (container code, chain code, or state)
# group_by_option = st.selectbox('Group by', ['Containercode', 'Chaincode', 'State','Region'])
# # Multi-select checkbox to select multiple years
# selected_years = st.multiselect('Select Year(s)', [2021, 2022, 2023, 2024], default=[2021])
# st.subheader(f"Sales Volume & Unit Price Correlation for {group_by_option} in {', '.join(map(str, selected_years))}")
# # Convert 'Dt' column to datetime
# df['Dt'] = pd.to_datetime(df['Dt'], errors='coerce')
# df['Promo'] = np.where(df['Dt'].dt.month.astype(str).isin(['3', '4', '5', '6']), 'Promo', 'NoPromo')
# df["Promo"] = df["Promo"].astype("category")
# # Filter the dataframe based on the selected item type and selected years
# filtered_df = df[(df['Itemtype'] == st.session_state['selected_item_type']) & (df['Dt'].dt.year.isin(selected_years))]
# # Find the top 3 values based on total SalesVolume in the selected grouping category
# top_3_values = filtered_df.groupby(group_by_option, observed=True)['SalesVolume'].sum().nlargest(3).index
# # Filter the data for only the top 3 values
# top_group_data = filtered_df[filtered_df[group_by_option].isin(top_3_values)]
# # Aggregate data
# agg_df = top_group_data.groupby([group_by_option, 'Year', 'Week', 'Dt'], observed=True).agg({
# 'SalesVolume': 'sum',
# 'UnitPrice': 'mean'
# }).reset_index()
# # Create a new column 'week-year' for X-axis labels
# agg_df['week-year'] = agg_df['Dt'].dt.strftime('%U-%Y')
# # Loop through the top 3 values and create separate plots using Plotly
# for value in top_3_values:
# value_data = agg_df[agg_df[group_by_option] == value]
# # Assuming you have 'value_data' from your previous code
# mean_sales_volume = value_data['SalesVolume'].mean()
# mean_unit_price = value_data['UnitPrice'].mean()
# # Create a Plotly figure
# fig = go.Figure()
# # Add SalesVolume trace
# fig.add_trace(go.Scatter(
# x=value_data['week-year'],
# y=value_data['SalesVolume'],
# mode='lines+markers',
# name='SalesVolume',
# line=dict(color='blue'),
# hovertemplate='SalesVolume: %{y}<br>Week-Year: %{x}'
# ))
# # Add UnitPrice trace on a secondary Y-axis
# fig.add_trace(go.Scatter(
# x=value_data['week-year'],
# y=value_data['UnitPrice'],
# mode='lines+markers',
# name='UnitPrice',
# line=dict(color='green'),
# yaxis='y2',
# hovertemplate='UnitPrice: %{y}<br>Week-Year: %{x}'
# ))
# # Add mean line for SalesVolume
# fig.add_shape(type="line",
# x0=value_data['week-year'].min(), x1=value_data['week-year'].max(),
# y0=mean_sales_volume, y1=mean_sales_volume,
# line=dict(color="blue", width=2, dash="dash"),
# xref='x', yref='y')
# # Add mean line for UnitPrice (on secondary Y-axis)
# fig.add_shape(type="line",
# x0=value_data['week-year'].min(), x1=value_data['week-year'].max(),
# y0=mean_unit_price, y1=mean_unit_price,
# line=dict(color="green", width=2, dash="dash"),
# xref='x', yref='y2')
# # Update layout for dual axes
# fig.update_layout(
# template='plotly_white',
# title=f"SalesVolume and UnitPrice - {value} ({group_by_option})",
# xaxis_title='Week-Year',
# yaxis_title='Sales Volume',
# yaxis2=dict(title='UnitPrice', overlaying='y', side='right'),
# legend=dict(x=0.9, y=1.15),
# hovermode="x unified", # Show both values in a tooltip
# height=600,
# margin=dict(l=50, r=50, t=50, b=50)
# )
# # Rotate X-axis labels
# fig.update_xaxes(tickangle=90)
# # Display the Plotly figure in Streamlit
# st.plotly_chart(fig, use_container_width=True)
################################
if st.session_state['active_card'] == 'card3':
# Dropdown for selecting the item type
item_type_options = df['Itemtype'].unique()
selected_item_type = st.selectbox("Select Item Type", item_type_options)
# Dropdown for selecting the region (multiple selection allowed)
region_options = df['Region'].dropna().unique()
selected_regions = st.multiselect("Select Region(s)", region_options, default=region_options)
# Filter data based on selected item type and selected regions
filtered_df = df[(df['Itemtype'] == selected_item_type) & (df['Region'].isin(selected_regions))]
# Group by Year, Region, Itemtype and Promo, and aggregate SalesVolume and UnitPrice
agg_df = filtered_df.groupby(['Fy', 'Region', 'Itemtype',]).agg({
'SalesVolume': 'sum',
'UnitPrice': 'mean'
}).reset_index()
# Sort values by Region, Itemtype, Fy, and Promo for YOY calculation
agg_df = agg_df.sort_values(by=['Region', 'Itemtype', 'Fy',])
# Calculate YOY percentage changes in Sales Volume and Unit Price
agg_df['SalesVolume_pct_change'] = agg_df.groupby(['Region', 'Itemtype',])['SalesVolume'].pct_change().round(3) * 100
agg_df['UnitPrice_pct_change'] = agg_df.groupby(['Region', 'Itemtype', ])['UnitPrice'].pct_change().round(3) * 100
# Calculate Price Elasticity Coefficient (PE)
agg_df['PE_Coeff'] = (agg_df['SalesVolume_pct_change'] / agg_df['UnitPrice_pct_change']).round(2)
# Exclude FY 2025 but keep FY 2021 even with NaN values
agg_df_filtered = agg_df[agg_df['Fy'] != 'FY 2025']
# Drop rows where PE_Coeff is NaN (optional)
agg_df_filtered = agg_df_filtered.dropna(subset=['PE_Coeff'])
agg_df_filtered = agg_df_filtered.rename(columns={
'SalesVolume_pct_change': 'SlVol%change',
'UnitPrice_pct_change': 'UnPr%change',
})
agg_df_filtered = agg_df_filtered.reset_index(drop=True)
st.dataframe(agg_df_filtered)
st.write(agg_df_filtered.shape)
# Extract values for the current and previous years from row 1 and row 2 of the dataframe
current_year_row = agg_df_filtered.iloc[1] # Row 1 - Current Year
previous_year_row = agg_df_filtered.iloc[0] # Row 2 - Previous Year
# Extract values for Unit Price and Sales Volume
unit_price_current_year = current_year_row['UnitPrice']
unit_price_previous_year = previous_year_row['UnitPrice']
sales_volume_current_year = current_year_row['SalesVolume']
sales_volume_previous_year = previous_year_row['SalesVolume']
# Calculate percentage changes for Unit Price and Sales Volume
unit_price_pct = ((unit_price_current_year - unit_price_previous_year) / unit_price_previous_year) * 100
sales_volume_pct = ((sales_volume_current_year - sales_volume_previous_year) / sales_volume_previous_year) * 100
# Calculate PE Coefficient
pe_coeff = sales_volume_pct / unit_price_pct
st.markdown(f'''### Calculations for Price Elasticity Coefficient''')
st.latex(rf"""
\text{{Unit Price \% Change}} = \frac{{{unit_price_current_year:.2f} - {unit_price_previous_year:.2f}}}{{{unit_price_previous_year:.2f}}} \times 100 = {unit_price_pct:.2f}\%
""")
# Sales Volume % Change
st.latex(rf"""
\text{{Sales Volume \% Change}} = \frac{{{sales_volume_current_year:.2f} - {sales_volume_previous_year:.2f}}}{{{sales_volume_previous_year:.2f}}} \times 100 = {sales_volume_pct:.2f}\%
""")
# PE Coefficient
st.latex(rf"""
\text{{PE Coefficient}} = \frac{{{sales_volume_pct:.2f}}}{{{unit_price_pct:.2f}}} = {pe_coeff:.2f}
""")
# Explanation for PE Coefficient Conditions
st.markdown(f"""
### Interpretation of Price Elasticity (PE) Coefficient:
The Price Elasticity (PE) coefficient reflects how sensitive sales volume is to changes in unit price.
- If the **PE coefficient is positive**:
1. When the price increases, sales volume increases.
2. When the price decreases, sales volume decreases.
- If the **PE coefficient is negative**:
1. When the price increases, sales volume decreases.
2. When the price decreases, sales volume increases.
""")
# Dynamic analysis based on the calculated PE coefficient and signs of changes
if unit_price_pct > 0 and sales_volume_pct > 0:
st.warning(f"""
Both unit price and sales volume increased (refer first and second row of the table). The PE coefficient of **{pe_coeff:.2f}** indicates that for every 1% increase in unit price, sales volume increased by approximately **{pe_coeff:.2f}%**.
""")
elif unit_price_pct < 0 and sales_volume_pct < 0:
st.warning(f"""
Both unit price and sales volume decreased (refer first and second row of the table). The PE coefficient of **{pe_coeff:.2f}** suggests that for every 1% decrease in unit price, sales volume decreased by approximately **{pe_coeff:.2f}%**.
""")
elif unit_price_pct > 0 and sales_volume_pct < 0:
st.warning(f"""
The unit price increased while sales volume decreased (refer first and second row of the table). The negative PE coefficient of **{pe_coeff:.2f}** means that for every 1% increase in unit price, sales volume fell by approximately **{abs(pe_coeff):.2f}%**.
""")
elif unit_price_pct < 0 and sales_volume_pct > 0:
st.warning(f"""
The unit price decreased while sales volume increased (refer first and second row of the table). The negative PE coefficient of **{pe_coeff:.2f}** implies that for every 1% decrease in unit price, sales volume increased by approximately **{abs(pe_coeff):.2f}%**.
""")
# Plot the PE Coefficient with Plotly
fig = px.line(
agg_df_filtered,
x='Fy',
y='PE_Coeff', # Differentiate between Promo and NoPromo
color='Region', # Differentiate lines by Region
title=f"Price Elasticity Coefficient (PE) by Year for {selected_item_type}",
labels={'Fy': 'Fiscal Year', 'PE_Coeff': 'Price Elasticity Coefficient'},
markers=True
)
# Customize layout and show plot
fig.update_layout(
height=600,
width=1000,
)
st.plotly_chart(fig, use_container_width=True)
#################### CARD-3 MONTHLY IMPLEMENTATION #########################
# Ensure 'Dt' column is in datetime format
df['Dt'] = pd.to_datetime(df['Dt'])
# Extract fiscal year and month from 'Dt' column
df['FY'] = df['Dt'].dt.year.astype(str)
df['Month'] = df['Dt'].dt.month.astype(str)
# Create FY_Month column
df['FY_Month'] = df['FY'] + '_' + df['Month']
# Filter data based on selected item type and selected regions
filtered_df = df[(df['Itemtype'] == selected_item_type) & (df['Region'].isin(selected_regions))]
# Group by Year, Region, Itemtype and aggregate SalesVolume and UnitPrice
agg_df = filtered_df.groupby(['FY_Month', 'Region', 'Itemtype']).agg({
'SalesVolume': 'sum',
'UnitPrice': 'mean'
}).reset_index()
# Split FY_Month again for correct sorting
agg_df[['FY', 'Month']] = agg_df['FY_Month'].str.split('_', expand=True)
agg_df['Month'] = agg_df['Month'].astype(int)
agg_df['FY'] = agg_df['FY'].astype(int)
# Combine FY and Month back into a datetime-like format for proper sorting
agg_df['FY_Month_dt'] = pd.to_datetime(agg_df['FY'].astype(str) + agg_df['Month'].astype(str).str.zfill(2), format='%Y%m')
# Sort values by Region, Itemtype, and FY_Month_dt
agg_df = agg_df.sort_values(by=['Region', 'Itemtype', 'FY_Month_dt'])
# Calculate YOY percentage changes in Sales Volume and Unit Price
agg_df['SalesVolume_pct_change'] = agg_df.groupby(['Region', 'Itemtype'])['SalesVolume'].pct_change().round(3) * 100
agg_df['UnitPrice_pct_change'] = agg_df.groupby(['Region', 'Itemtype'])['UnitPrice'].pct_change().round(3) * 100
# Calculate Price Elasticity Coefficient (PE)
agg_df['PE_Coeff'] = (agg_df['SalesVolume_pct_change'] / agg_df['UnitPrice_pct_change']).round(2)
# Exclude FY 2021 and FY 2025
agg_df_filtered = agg_df[~agg_df['FY'].astype(str).str.contains('2020|2021|2025')]
# Drop rows where PE_Coeff is NaN (optional)
agg_df_filtered = agg_df_filtered.dropna(subset=['PE_Coeff'])
agg_df_filtered = agg_df_filtered[(agg_df_filtered['PE_Coeff'] < 1000) & (agg_df_filtered['PE_Coeff'] > -1000)]
# Plot the PE Coefficient with Plotly
fig = go.Figure()
# Iterate through each selected region and plot separately
for region in selected_regions:
# Filter the DataFrame for the current region
region_df = agg_df_filtered[agg_df_filtered['Region'] == region]
# Add a line trace for the region
fig.add_trace(go.Scatter(
x=region_df['FY_Month_dt'], # Use the datetime-like column for correct sorting
y=region_df['PE_Coeff'],
mode='lines+markers',
name=region, # Set the name to the region to appear in the legend
line=dict(width=2),
marker=dict(size=6),
))
# Customize layout
fig.update_layout(
title=f"Price Elasticity Coefficient (PE) by Year-Month for {selected_item_type}",
xaxis_title="Fiscal Year_Month",
yaxis_title="Price Elasticity Coefficient (PE)",
height=600,
width=1000,
legend_title="Region",
xaxis=dict(
tickformat='%Y-%m', # Format X-axis ticks as Year-Month
)
)
# Show the plot in Streamlit
st.plotly_chart(fig, use_container_width=True)