YOLO-ARENA / app.py
SkalskiP's picture
allow to set different confidence thresholds per model
362e68b
raw
history blame
8.57 kB
from typing import Tuple
import gradio as gr
import numpy as np
import supervision as sv
from inference import get_model
MARKDOWN = """
<h1 style='text-align: center'>YOLO-ARENA 🏟️</h1>
Welcome to YOLO-Arena! This demo showcases the performance of various YOLO models
pre-trained on the COCO dataset.
- **YOLOv8**
<div style="display: flex; align-items: center;">
<a href="https://github.com/ultralytics/ultralytics" style="margin-right: 10px;">
<img src="https://badges.aleen42.com/src/github.svg">
</a>
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov8-object-detection-on-custom-dataset.ipynb" style="margin-right: 10px;">
<img src="https://colab.research.google.com/assets/colab-badge.svg">
</a>
</div>
- **YOLOv9**
<div style="display: flex; align-items: center;">
<a href="https://github.com/WongKinYiu/yolov9" style="margin-right: 10px;">
<img src="https://badges.aleen42.com/src/github.svg">
</a>
<a href="https://arxiv.org/abs/2402.13616" style="margin-right: 10px;">
<img src="https://img.shields.io/badge/arXiv-2402.13616-b31b1b.svg">
</a>
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov9-object-detection-on-custom-dataset.ipynb" style="margin-right: 10px;">
<img src="https://colab.research.google.com/assets/colab-badge.svg">
</a>
</div>
- **YOLOv10**
<div style="display: flex; align-items: center;">
<a href="https://github.com/THU-MIG/yolov10" style="margin-right: 10px;">
<img src="https://badges.aleen42.com/src/github.svg">
</a>
<a href="https://arxiv.org/abs/2405.14458" style="margin-right: 10px;">
<img src="https://img.shields.io/badge/arXiv-2405.14458-b31b1b.svg">
</a>
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov10-object-detection-on-custom-dataset.ipynb" style="margin-right: 10px;">
<img src="https://colab.research.google.com/assets/colab-badge.svg">
</a>
</div>
Powered by Roboflow [Inference](https://github.com/roboflow/inference) and
[Supervision](https://github.com/roboflow/supervision). 🔥
"""
IMAGE_EXAMPLES = [
['https://media.roboflow.com/supervision/image-examples/people-walking.png', 0.3, 0.3, 0.1],
['https://media.roboflow.com/supervision/image-examples/vehicles.png', 0.3, 0.3, 0.1],
['https://media.roboflow.com/supervision/image-examples/basketball-1.png', 0.3, 0.3, 0.1],
]
YOLO_V8_MODEL = get_model(model_id="coco/8")
YOLO_V9_MODEL = get_model(model_id="coco/17")
YOLO_V10_MODEL = get_model(model_id="coco/22")
LABEL_ANNOTATORS = sv.LabelAnnotator(text_color=sv.Color.black())
BOUNDING_BOX_ANNOTATORS = sv.BoundingBoxAnnotator()
def detect_and_annotate(
model,
input_image: np.ndarray,
confidence_threshold: float,
iou_threshold: float,
class_id_mapping: dict = None
) -> np.ndarray:
result = model.infer(
input_image,
confidence=confidence_threshold,
iou_threshold=iou_threshold
)[0]
detections = sv.Detections.from_inference(result)
if class_id_mapping:
detections.class_id = np.array([
class_id_mapping[class_id]
for class_id
in detections.class_id
])
labels = [
f"{class_name} ({confidence:.2f})"
for class_name, confidence
in zip(detections['class_name'], detections.confidence)
]
annotated_image = input_image.copy()
annotated_image = BOUNDING_BOX_ANNOTATORS.annotate(
scene=annotated_image, detections=detections)
annotated_image = LABEL_ANNOTATORS.annotate(
scene=annotated_image, detections=detections, labels=labels)
return annotated_image
def process_image(
input_image: np.ndarray,
yolo_v8_confidence_threshold: float,
yolo_v9_confidence_threshold: float,
yolo_v10_confidence_threshold: float,
iou_threshold: float
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
yolo_v8_annotated_image = detect_and_annotate(
YOLO_V8_MODEL, input_image, yolo_v8_confidence_threshold, iou_threshold)
yolo_v9_annotated_image = detect_and_annotate(
YOLO_V9_MODEL, input_image, yolo_v9_confidence_threshold, iou_threshold)
yolo_10_annotated_image = detect_and_annotate(
YOLO_V10_MODEL, input_image, yolo_v10_confidence_threshold, iou_threshold)
return (
yolo_v8_annotated_image,
yolo_v9_annotated_image,
yolo_10_annotated_image
)
yolo_v8_confidence_threshold_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.3,
step=0.01,
label="YOLOv8 Confidence Threshold",
info=(
"The confidence threshold for the YOLO model. Lower the threshold to "
"reduce false negatives, enhancing the model's sensitivity to detect "
"sought-after objects. Conversely, increase the threshold to minimize false "
"positives, preventing the model from identifying objects it shouldn't."
))
yolo_v9_confidence_threshold_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.3,
step=0.01,
label="YOLOv9 Confidence Threshold",
info=(
"The confidence threshold for the YOLO model. Lower the threshold to "
"reduce false negatives, enhancing the model's sensitivity to detect "
"sought-after objects. Conversely, increase the threshold to minimize false "
"positives, preventing the model from identifying objects it shouldn't."
))
yolo_v10_confidence_threshold_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.3,
step=0.01,
label="YOLOv10 Confidence Threshold",
info=(
"The confidence threshold for the YOLO model. Lower the threshold to "
"reduce false negatives, enhancing the model's sensitivity to detect "
"sought-after objects. Conversely, increase the threshold to minimize false "
"positives, preventing the model from identifying objects it shouldn't."
))
iou_threshold_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.5,
step=0.01,
label="IoU Threshold",
info=(
"The Intersection over Union (IoU) threshold for non-maximum suppression. "
"Decrease the value to lessen the occurrence of overlapping bounding boxes, "
"making the detection process stricter. On the other hand, increase the value "
"to allow more overlapping bounding boxes, accommodating a broader range of "
"detections."
))
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Accordion("Configuration", open=False):
with gr.Row():
yolo_v8_confidence_threshold_component.render()
yolo_v9_confidence_threshold_component.render()
yolo_v10_confidence_threshold_component.render()
iou_threshold_component.render()
with gr.Row():
input_image_component = gr.Image(
type='pil',
label='Input'
)
yolo_v8_output_image_component = gr.Image(
type='pil',
label='YOLOv8'
)
with gr.Row():
yolo_v9_output_image_component = gr.Image(
type='pil',
label='YOLOv9'
)
yolo_v10_output_image_component = gr.Image(
type='pil',
label='YOLOv10'
)
submit_button_component = gr.Button(
value='Submit',
scale=1,
variant='primary'
)
gr.Examples(
fn=process_image,
examples=IMAGE_EXAMPLES,
inputs=[
input_image_component,
yolo_v8_confidence_threshold_component,
yolo_v9_confidence_threshold_component,
yolo_v10_confidence_threshold_component,
iou_threshold_component
],
outputs=[
yolo_v8_output_image_component,
yolo_v9_output_image_component,
yolo_v10_output_image_component
]
)
submit_button_component.click(
fn=process_image,
inputs=[
input_image_component,
yolo_v8_confidence_threshold_component,
yolo_v9_confidence_threshold_component,
yolo_v10_confidence_threshold_component,
iou_threshold_component
],
outputs=[
yolo_v8_output_image_component,
yolo_v9_output_image_component,
yolo_v10_output_image_component
]
)
demo.launch(debug=False, show_error=True, max_threads=1)