florence-sam / app.py
SkalskiP's picture
open vocabulary detection with Florence2 + masks with SAM2
576e22a
raw
history blame
5.73 kB
from typing import Tuple, Optional
import gradio as gr
import supervision as sv
import torch
from PIL import Image
from utils.florence import load_florence_model, run_florence_inference, \
FLORENCE_DETAILED_CAPTION_TASK, \
FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK, FLORENCE_OPEN_VOCABULARY_DETECTION_TASK
from utils.modes import INFERENCE_MODES, OPEN_VOCABULARY_DETECTION, \
CAPTION_GROUNDING_MASKS
from utils.sam import load_sam_model, run_sam_inference
MARKDOWN = """
# Florence2 + SAM2 🔥
This demo integrates Florence2 and SAM2 models for detailed image captioning and object
detection. Florence2 generates detailed captions that are then used to perform phrase
grounding. The Segment Anything Model 2 (SAM2) converts these phrase-grounded boxes
into masks.
"""
EXAMPLES = [
[OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", 'straw'],
[OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", 'napkin'],
[OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", 'tail'],
[CAPTION_GROUNDING_MASKS, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", None],
[CAPTION_GROUNDING_MASKS, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", None],
]
DEVICE = torch.device("cuda")
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
SAM_MODEL = load_sam_model(device=DEVICE)
BOX_ANNOTATOR = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
LABEL_ANNOTATOR = sv.LabelAnnotator(
color_lookup=sv.ColorLookup.INDEX,
text_position=sv.Position.CENTER_OF_MASS,
text_color=sv.Color.from_hex("#FFFFFF"),
border_radius=5
)
MASK_ANNOTATOR = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX)
def annotate_image(image, detections):
output_image = image.copy()
output_image = MASK_ANNOTATOR.annotate(output_image, detections)
output_image = BOX_ANNOTATOR.annotate(output_image, detections)
output_image = LABEL_ANNOTATOR.annotate(output_image, detections)
return output_image
def on_mode_dropdown_change(text):
return [
gr.Textbox(visible=text == OPEN_VOCABULARY_DETECTION),
gr.Textbox(visible=text == CAPTION_GROUNDING_MASKS),
]
def process(
mode_dropdown, image_input, text_input
) -> Tuple[Optional[Image.Image], Optional[str]]:
if not image_input:
return None, None
if mode_dropdown == OPEN_VOCABULARY_DETECTION:
if not text_input:
return None, None
_, result = run_florence_inference(
model=FLORENCE_MODEL,
processor=FLORENCE_PROCESSOR,
device=DEVICE,
image=image_input,
task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK,
text=text_input
)
detections = sv.Detections.from_lmm(
lmm=sv.LMM.FLORENCE_2,
result=result,
resolution_wh=image_input.size
)
detections = run_sam_inference(SAM_MODEL, image_input, detections)
return annotate_image(image_input, detections), None
if mode_dropdown == CAPTION_GROUNDING_MASKS:
_, result = run_florence_inference(
model=FLORENCE_MODEL,
processor=FLORENCE_PROCESSOR,
device=DEVICE,
image=image_input,
task=FLORENCE_DETAILED_CAPTION_TASK
)
caption = result[FLORENCE_DETAILED_CAPTION_TASK]
_, result = run_florence_inference(
model=FLORENCE_MODEL,
processor=FLORENCE_PROCESSOR,
device=DEVICE,
image=image_input,
task=FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK,
text=caption
)
detections = sv.Detections.from_lmm(
lmm=sv.LMM.FLORENCE_2,
result=result,
resolution_wh=image_input.size
)
detections = run_sam_inference(SAM_MODEL, image_input, detections)
return annotate_image(image_input, detections), caption
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
mode_dropdown_component = gr.Dropdown(
choices=INFERENCE_MODES,
value=INFERENCE_MODES[0],
label="Mode",
info="Select a mode to use.",
interactive=True
)
with gr.Row():
with gr.Column():
image_input_component = gr.Image(
type='pil', label='Upload image')
text_input_component = gr.Textbox(
label='Text prompt')
submit_button_component = gr.Button(value='Submit', variant='primary')
with gr.Column():
image_output_component = gr.Image(type='pil', label='Image output')
text_output_component = gr.Textbox(label='Caption output', visible=False)
with gr.Row():
gr.Examples(
fn=process,
examples=EXAMPLES,
inputs=[
mode_dropdown_component,
image_input_component,
text_input_component
],
outputs=[
image_output_component,
text_output_component
],
run_on_click=True
)
submit_button_component.click(
fn=process,
inputs=[
mode_dropdown_component,
image_input_component,
text_input_component
],
outputs=[
image_output_component,
text_output_component
]
)
mode_dropdown_component.change(
on_mode_dropdown_change,
inputs=[mode_dropdown_component],
outputs=[
text_input_component,
text_output_component
]
)
demo.launch(debug=False, show_error=True, max_threads=1)