aiavatartest / videoretalking /utils /inference_utils.py
Spanicin's picture
Update videoretalking/utils/inference_utils.py
42e8c1c verified
raw
history blame
11.5 kB
import numpy as np
import cv2, argparse, torch
import torchvision.transforms.functional as TF
from videoretalking.models import load_network, load_DNet
from tqdm import tqdm
from PIL import Image
from scipy.spatial import ConvexHull
from videoretalking.third_part import face_detection
from videoretalking.third_part.face3d.models import networks
import warnings
warnings.filterwarnings("ignore")
def options():
parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models')
parser.add_argument('--DNet_path', type=str, default='checkpoints/DNet.pt')
parser.add_argument('--LNet_path', type=str, default='checkpoints/LNet.pth')
parser.add_argument('--ENet_path', type=str, default='checkpoints/ENet.pth')
parser.add_argument('--face3d_net_path', type=str, default='checkpoints/face3d_pretrain_epoch_20.pth')
parser.add_argument('--face', type=str, help='Filepath of video/image that contains faces to use', required=True)
parser.add_argument('--audio', type=str, help='Filepath of video/audio file to use as raw audio source', required=True)
parser.add_argument('--exp_img', type=str, help='Expression template. neutral, smile or image path', default='neutral')
parser.add_argument('--outfile', type=str, help='Video path to save result')
parser.add_argument('--fps', type=float, help='Can be specified only if input is a static image (default: 25)', default=25., required=False)
parser.add_argument('--pads', nargs='+', type=int, default=[0, 20, 0, 0], help='Padding (top, bottom, left, right). Please adjust to include chin at least')
parser.add_argument('--face_det_batch_size', type=int, help='Batch size for face detection', default=4)
parser.add_argument('--LNet_batch_size', type=int, help='Batch size for LNet', default=16)
parser.add_argument('--img_size', type=int, default=384)
parser.add_argument('--crop', nargs='+', type=int, default=[0, -1, 0, -1],
help='Crop video to a smaller region (top, bottom, left, right). Applied after resize_factor and rotate arg. '
'Useful if multiple face present. -1 implies the value will be auto-inferred based on height, width')
parser.add_argument('--box', nargs='+', type=int, default=[-1, -1, -1, -1],
help='Specify a constant bounding box for the face. Use only as a last resort if the face is not detected.'
'Also, might work only if the face is not moving around much. Syntax: (top, bottom, left, right).')
parser.add_argument('--nosmooth', default=False, action='store_true', help='Prevent smoothing face detections over a short temporal window')
parser.add_argument('--static', default=False, action='store_true')
parser.add_argument('--up_face', default='original')
parser.add_argument('--one_shot', action='store_true')
parser.add_argument('--without_rl1', default=False, action='store_true', help='Do not use the relative l1')
parser.add_argument('--tmp_dir', type=str, default='temp', help='Folder to save tmp results')
parser.add_argument('--re_preprocess', action='store_true')
args = parser.parse_args()
return args
exp_aus_dict = { # AU01_r, AU02_r, AU04_r, AU05_r, AU06_r, AU07_r, AU09_r, AU10_r, AU12_r, AU14_r, AU15_r, AU17_r, AU20_r, AU23_r, AU25_r, AU26_r, AU45_r.
'sad': torch.Tensor([[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]),
'angry':torch.Tensor([[0, 0, 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]),
'surprise': torch.Tensor([[0, 0, 0, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
}
def mask_postprocess(mask, thres=20):
mask[:thres, :] = 0; mask[-thres:, :] = 0
mask[:, :thres] = 0; mask[:, -thres:] = 0
mask = cv2.GaussianBlur(mask, (101, 101), 11)
mask = cv2.GaussianBlur(mask, (101, 101), 11)
return mask.astype(np.float32)
def trans_image(image):
image = TF.resize(
image, size=256, interpolation=Image.BICUBIC)
image = TF.to_tensor(image)
image = TF.normalize(image, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
return image
def obtain_seq_index(index, num_frames):
seq = list(range(index-13, index+13))
seq = [ min(max(item, 0), num_frames-1) for item in seq ]
return seq
def transform_semantic(semantic, frame_index, crop_norm_ratio=None):
index = obtain_seq_index(frame_index, semantic.shape[0])
coeff_3dmm = semantic[index,...]
ex_coeff = coeff_3dmm[:,80:144] #expression # 64
angles = coeff_3dmm[:,224:227] #euler angles for pose
translation = coeff_3dmm[:,254:257] #translation
crop = coeff_3dmm[:,259:262] #crop param
if crop_norm_ratio:
crop[:, -3] = crop[:, -3] * crop_norm_ratio
coeff_3dmm = np.concatenate([ex_coeff, angles, translation, crop], 1)
return torch.Tensor(coeff_3dmm).permute(1,0)
def find_crop_norm_ratio(source_coeff, target_coeffs):
alpha = 0.3
exp_diff = np.mean(np.abs(target_coeffs[:,80:144] - source_coeff[:,80:144]), 1) # mean different exp
angle_diff = np.mean(np.abs(target_coeffs[:,224:227] - source_coeff[:,224:227]), 1) # mean different angle
index = np.argmin(alpha*exp_diff + (1-alpha)*angle_diff) # find the smallerest index
crop_norm_ratio = source_coeff[:,-3] / target_coeffs[index:index+1, -3]
return crop_norm_ratio
def get_smoothened_boxes(boxes, T):
for i in range(len(boxes)):
if i + T > len(boxes):
window = boxes[len(boxes) - T:]
else:
window = boxes[i : i + T]
boxes[i] = np.mean(window, axis=0)
return boxes
def face_detect(images, face_det_batch_size, nosmooth, pads, jaw_correction, detector=None):
# def face_detect(images, args, jaw_correction=False, detector=None):
if detector == None:
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
flip_input=False, device=device)
batch_size = face_det_batch_size
while 1:
predictions = []
try:
for i in tqdm(range(0, len(images), batch_size),desc='FaceDet:'):
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
except RuntimeError:
if batch_size == 1:
raise RuntimeError('Image too big to run face detection on GPU. Please use the --resize_factor argument')
batch_size //= 2
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
continue
break
results = []
pady1, pady2, padx1, padx2 = pads if jaw_correction else (0,20,0,0)
for rect, image in zip(predictions, images):
if rect is None:
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
boxes = np.array(results)
if not nosmooth: boxes = get_smoothened_boxes(boxes, T=5)
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
del detector
torch.cuda.empty_cache()
return results
def _load(checkpoint_path, device):
if device == 'cuda':
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
return checkpoint
def split_coeff(coeffs):
"""
Return:
coeffs_dict -- a dict of torch.tensors
Parameters:
coeffs -- torch.tensor, size (B, 256)
"""
id_coeffs = coeffs[:, :80]
exp_coeffs = coeffs[:, 80: 144]
tex_coeffs = coeffs[:, 144: 224]
angles = coeffs[:, 224: 227]
gammas = coeffs[:, 227: 254]
translations = coeffs[:, 254:]
return {
'id': id_coeffs,
'exp': exp_coeffs,
'tex': tex_coeffs,
'angle': angles,
'gamma': gammas,
'trans': translations
}
def Laplacian_Pyramid_Blending_with_mask(A, B, m, num_levels = 6):
# generate Gaussian pyramid for A,B and mask
GA = A.copy()
GB = B.copy()
GM = m.copy()
gpA = [GA]
gpB = [GB]
gpM = [GM]
for i in range(num_levels):
GA = cv2.pyrDown(GA)
GB = cv2.pyrDown(GB)
GM = cv2.pyrDown(GM)
gpA.append(np.float32(GA))
gpB.append(np.float32(GB))
gpM.append(np.float32(GM))
# generate Laplacian Pyramids for A,B and masks
lpA = [gpA[num_levels-1]] # the bottom of the Lap-pyr holds the last (smallest) Gauss level
lpB = [gpB[num_levels-1]]
gpMr = [gpM[num_levels-1]]
for i in range(num_levels-1,0,-1):
# Laplacian: subtract upscaled version of lower level from current level
# to get the high frequencies
LA = np.subtract(gpA[i-1], cv2.pyrUp(gpA[i]))
LB = np.subtract(gpB[i-1], cv2.pyrUp(gpB[i]))
lpA.append(LA)
lpB.append(LB)
gpMr.append(gpM[i-1]) # also reverse the masks
# Now blend images according to mask in each level
LS = []
for la,lb,gm in zip(lpA,lpB,gpMr):
gm = gm[:,:,np.newaxis]
ls = la * gm + lb * (1.0 - gm)
LS.append(ls)
# now reconstruct
ls_ = LS[0]
for i in range(1,num_levels):
ls_ = cv2.pyrUp(ls_)
ls_ = cv2.add(ls_, LS[i])
return ls_
def load_model(device,DNet_path,LNet_path,ENet_path):
D_Net = load_DNet(DNet_path).to(device)
model = load_network(LNet_path,ENet_path).to(device)
return D_Net, model
def normalize_kp(kp_source, kp_driving, kp_driving_initial, adapt_movement_scale=False,
use_relative_movement=False, use_relative_jacobian=False):
if adapt_movement_scale:
source_area = ConvexHull(kp_source['value'][0].data.cpu().numpy()).volume
driving_area = ConvexHull(kp_driving_initial['value'][0].data.cpu().numpy()).volume
adapt_movement_scale = np.sqrt(source_area) / np.sqrt(driving_area)
else:
adapt_movement_scale = 1
kp_new = {k: v for k, v in kp_driving.items()}
if use_relative_movement:
kp_value_diff = (kp_driving['value'] - kp_driving_initial['value'])
kp_value_diff *= adapt_movement_scale
kp_new['value'] = kp_value_diff + kp_source['value']
if use_relative_jacobian:
jacobian_diff = torch.matmul(kp_driving['jacobian'], torch.inverse(kp_driving_initial['jacobian']))
kp_new['jacobian'] = torch.matmul(jacobian_diff, kp_source['jacobian'])
return kp_new
def load_face3d_net(ckpt_path, device):
net_recon = networks.define_net_recon(net_recon='resnet50', use_last_fc=False, init_path='').to(device)
checkpoint = torch.load(ckpt_path, map_location=device)
net_recon.load_state_dict(checkpoint['net_recon'])
net_recon.eval()
return net_recon