Spaces:
Paused
Paused
import numpy as np | |
import cv2, argparse, torch | |
import torchvision.transforms.functional as TF | |
from videoretalking.models import load_network, load_DNet | |
from tqdm import tqdm | |
from PIL import Image | |
from scipy.spatial import ConvexHull | |
from videoretalking.third_part import face_detection | |
from videoretalking.third_part.face3d.models import networks | |
import warnings | |
warnings.filterwarnings("ignore") | |
def options(): | |
parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models') | |
parser.add_argument('--DNet_path', type=str, default='checkpoints/DNet.pt') | |
parser.add_argument('--LNet_path', type=str, default='checkpoints/LNet.pth') | |
parser.add_argument('--ENet_path', type=str, default='checkpoints/ENet.pth') | |
parser.add_argument('--face3d_net_path', type=str, default='checkpoints/face3d_pretrain_epoch_20.pth') | |
parser.add_argument('--face', type=str, help='Filepath of video/image that contains faces to use', required=True) | |
parser.add_argument('--audio', type=str, help='Filepath of video/audio file to use as raw audio source', required=True) | |
parser.add_argument('--exp_img', type=str, help='Expression template. neutral, smile or image path', default='neutral') | |
parser.add_argument('--outfile', type=str, help='Video path to save result') | |
parser.add_argument('--fps', type=float, help='Can be specified only if input is a static image (default: 25)', default=25., required=False) | |
parser.add_argument('--pads', nargs='+', type=int, default=[0, 20, 0, 0], help='Padding (top, bottom, left, right). Please adjust to include chin at least') | |
parser.add_argument('--face_det_batch_size', type=int, help='Batch size for face detection', default=4) | |
parser.add_argument('--LNet_batch_size', type=int, help='Batch size for LNet', default=16) | |
parser.add_argument('--img_size', type=int, default=384) | |
parser.add_argument('--crop', nargs='+', type=int, default=[0, -1, 0, -1], | |
help='Crop video to a smaller region (top, bottom, left, right). Applied after resize_factor and rotate arg. ' | |
'Useful if multiple face present. -1 implies the value will be auto-inferred based on height, width') | |
parser.add_argument('--box', nargs='+', type=int, default=[-1, -1, -1, -1], | |
help='Specify a constant bounding box for the face. Use only as a last resort if the face is not detected.' | |
'Also, might work only if the face is not moving around much. Syntax: (top, bottom, left, right).') | |
parser.add_argument('--nosmooth', default=False, action='store_true', help='Prevent smoothing face detections over a short temporal window') | |
parser.add_argument('--static', default=False, action='store_true') | |
parser.add_argument('--up_face', default='original') | |
parser.add_argument('--one_shot', action='store_true') | |
parser.add_argument('--without_rl1', default=False, action='store_true', help='Do not use the relative l1') | |
parser.add_argument('--tmp_dir', type=str, default='temp', help='Folder to save tmp results') | |
parser.add_argument('--re_preprocess', action='store_true') | |
args = parser.parse_args() | |
return args | |
exp_aus_dict = { # AU01_r, AU02_r, AU04_r, AU05_r, AU06_r, AU07_r, AU09_r, AU10_r, AU12_r, AU14_r, AU15_r, AU17_r, AU20_r, AU23_r, AU25_r, AU26_r, AU45_r. | |
'sad': torch.Tensor([[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), | |
'angry':torch.Tensor([[0, 0, 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), | |
'surprise': torch.Tensor([[0, 0, 0, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) | |
} | |
def mask_postprocess(mask, thres=20): | |
mask[:thres, :] = 0; mask[-thres:, :] = 0 | |
mask[:, :thres] = 0; mask[:, -thres:] = 0 | |
mask = cv2.GaussianBlur(mask, (101, 101), 11) | |
mask = cv2.GaussianBlur(mask, (101, 101), 11) | |
return mask.astype(np.float32) | |
def trans_image(image): | |
image = TF.resize( | |
image, size=256, interpolation=Image.BICUBIC) | |
image = TF.to_tensor(image) | |
image = TF.normalize(image, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) | |
return image | |
def obtain_seq_index(index, num_frames): | |
seq = list(range(index-13, index+13)) | |
seq = [ min(max(item, 0), num_frames-1) for item in seq ] | |
return seq | |
def transform_semantic(semantic, frame_index, crop_norm_ratio=None): | |
index = obtain_seq_index(frame_index, semantic.shape[0]) | |
coeff_3dmm = semantic[index,...] | |
ex_coeff = coeff_3dmm[:,80:144] #expression # 64 | |
angles = coeff_3dmm[:,224:227] #euler angles for pose | |
translation = coeff_3dmm[:,254:257] #translation | |
crop = coeff_3dmm[:,259:262] #crop param | |
if crop_norm_ratio: | |
crop[:, -3] = crop[:, -3] * crop_norm_ratio | |
coeff_3dmm = np.concatenate([ex_coeff, angles, translation, crop], 1) | |
return torch.Tensor(coeff_3dmm).permute(1,0) | |
def find_crop_norm_ratio(source_coeff, target_coeffs): | |
alpha = 0.3 | |
exp_diff = np.mean(np.abs(target_coeffs[:,80:144] - source_coeff[:,80:144]), 1) # mean different exp | |
angle_diff = np.mean(np.abs(target_coeffs[:,224:227] - source_coeff[:,224:227]), 1) # mean different angle | |
index = np.argmin(alpha*exp_diff + (1-alpha)*angle_diff) # find the smallerest index | |
crop_norm_ratio = source_coeff[:,-3] / target_coeffs[index:index+1, -3] | |
return crop_norm_ratio | |
def get_smoothened_boxes(boxes, T): | |
for i in range(len(boxes)): | |
if i + T > len(boxes): | |
window = boxes[len(boxes) - T:] | |
else: | |
window = boxes[i : i + T] | |
boxes[i] = np.mean(window, axis=0) | |
return boxes | |
def face_detect(images, face_det_batch_size, nosmooth, pads, jaw_correction, detector=None): | |
# def face_detect(images, args, jaw_correction=False, detector=None): | |
if detector == None: | |
device = 'cuda:0' if torch.cuda.is_available() else 'cpu' | |
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D, | |
flip_input=False, device=device) | |
batch_size = face_det_batch_size | |
while 1: | |
predictions = [] | |
try: | |
for i in tqdm(range(0, len(images), batch_size),desc='FaceDet:'): | |
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size]))) | |
except RuntimeError: | |
if batch_size == 1: | |
raise RuntimeError('Image too big to run face detection on GPU. Please use the --resize_factor argument') | |
batch_size //= 2 | |
print('Recovering from OOM error; New batch size: {}'.format(batch_size)) | |
continue | |
break | |
results = [] | |
pady1, pady2, padx1, padx2 = pads if jaw_correction else (0,20,0,0) | |
for rect, image in zip(predictions, images): | |
if rect is None: | |
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected. | |
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.') | |
y1 = max(0, rect[1] - pady1) | |
y2 = min(image.shape[0], rect[3] + pady2) | |
x1 = max(0, rect[0] - padx1) | |
x2 = min(image.shape[1], rect[2] + padx2) | |
results.append([x1, y1, x2, y2]) | |
boxes = np.array(results) | |
if not nosmooth: boxes = get_smoothened_boxes(boxes, T=5) | |
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)] | |
del detector | |
torch.cuda.empty_cache() | |
return results | |
def _load(checkpoint_path, device): | |
if device == 'cuda': | |
checkpoint = torch.load(checkpoint_path) | |
else: | |
checkpoint = torch.load(checkpoint_path, | |
map_location=lambda storage, loc: storage) | |
return checkpoint | |
def split_coeff(coeffs): | |
""" | |
Return: | |
coeffs_dict -- a dict of torch.tensors | |
Parameters: | |
coeffs -- torch.tensor, size (B, 256) | |
""" | |
id_coeffs = coeffs[:, :80] | |
exp_coeffs = coeffs[:, 80: 144] | |
tex_coeffs = coeffs[:, 144: 224] | |
angles = coeffs[:, 224: 227] | |
gammas = coeffs[:, 227: 254] | |
translations = coeffs[:, 254:] | |
return { | |
'id': id_coeffs, | |
'exp': exp_coeffs, | |
'tex': tex_coeffs, | |
'angle': angles, | |
'gamma': gammas, | |
'trans': translations | |
} | |
def Laplacian_Pyramid_Blending_with_mask(A, B, m, num_levels = 6): | |
# generate Gaussian pyramid for A,B and mask | |
GA = A.copy() | |
GB = B.copy() | |
GM = m.copy() | |
gpA = [GA] | |
gpB = [GB] | |
gpM = [GM] | |
for i in range(num_levels): | |
GA = cv2.pyrDown(GA) | |
GB = cv2.pyrDown(GB) | |
GM = cv2.pyrDown(GM) | |
gpA.append(np.float32(GA)) | |
gpB.append(np.float32(GB)) | |
gpM.append(np.float32(GM)) | |
# generate Laplacian Pyramids for A,B and masks | |
lpA = [gpA[num_levels-1]] # the bottom of the Lap-pyr holds the last (smallest) Gauss level | |
lpB = [gpB[num_levels-1]] | |
gpMr = [gpM[num_levels-1]] | |
for i in range(num_levels-1,0,-1): | |
# Laplacian: subtract upscaled version of lower level from current level | |
# to get the high frequencies | |
LA = np.subtract(gpA[i-1], cv2.pyrUp(gpA[i])) | |
LB = np.subtract(gpB[i-1], cv2.pyrUp(gpB[i])) | |
lpA.append(LA) | |
lpB.append(LB) | |
gpMr.append(gpM[i-1]) # also reverse the masks | |
# Now blend images according to mask in each level | |
LS = [] | |
for la,lb,gm in zip(lpA,lpB,gpMr): | |
gm = gm[:,:,np.newaxis] | |
ls = la * gm + lb * (1.0 - gm) | |
LS.append(ls) | |
# now reconstruct | |
ls_ = LS[0] | |
for i in range(1,num_levels): | |
ls_ = cv2.pyrUp(ls_) | |
ls_ = cv2.add(ls_, LS[i]) | |
return ls_ | |
def load_model(device,DNet_path,LNet_path,ENet_path): | |
D_Net = load_DNet(DNet_path).to(device) | |
model = load_network(LNet_path,ENet_path).to(device) | |
return D_Net, model | |
def normalize_kp(kp_source, kp_driving, kp_driving_initial, adapt_movement_scale=False, | |
use_relative_movement=False, use_relative_jacobian=False): | |
if adapt_movement_scale: | |
source_area = ConvexHull(kp_source['value'][0].data.cpu().numpy()).volume | |
driving_area = ConvexHull(kp_driving_initial['value'][0].data.cpu().numpy()).volume | |
adapt_movement_scale = np.sqrt(source_area) / np.sqrt(driving_area) | |
else: | |
adapt_movement_scale = 1 | |
kp_new = {k: v for k, v in kp_driving.items()} | |
if use_relative_movement: | |
kp_value_diff = (kp_driving['value'] - kp_driving_initial['value']) | |
kp_value_diff *= adapt_movement_scale | |
kp_new['value'] = kp_value_diff + kp_source['value'] | |
if use_relative_jacobian: | |
jacobian_diff = torch.matmul(kp_driving['jacobian'], torch.inverse(kp_driving_initial['jacobian'])) | |
kp_new['jacobian'] = torch.matmul(jacobian_diff, kp_source['jacobian']) | |
return kp_new | |
def load_face3d_net(ckpt_path, device): | |
net_recon = networks.define_net_recon(net_recon='resnet50', use_last_fc=False, init_path='').to(device) | |
checkpoint = torch.load(ckpt_path, map_location=device) | |
net_recon.load_state_dict(checkpoint['net_recon']) | |
net_recon.eval() | |
return net_recon |