upscaler / app.py
Spanicin's picture
Update app.py
baa503f verified
raw
history blame
14.5 kB
# import logging
# import random
# import warnings
# import os
# import gradio as gr
# import numpy as np
# import spaces
# import torch
# from diffusers import FluxControlNetModel
# from diffusers.pipelines import FluxControlNetPipeline
# from gradio_imageslider import ImageSlider
# from PIL import Image
# from huggingface_hub import snapshot_download
# css = """
# #col-container {
# margin: 0 auto;
# max-width: 512px;
# }
# """
# if torch.cuda.is_available():
# power_device = "GPU"
# device = "cuda"
# else:
# power_device = "CPU"
# device = "cpu"
# huggingface_token = os.getenv("HUGGINFACE_TOKEN")
# model_path = snapshot_download(
# repo_id="black-forest-labs/FLUX.1-dev",
# repo_type="model",
# ignore_patterns=["*.md", "*..gitattributes"],
# local_dir="FLUX.1-dev",
# token=huggingface_token, # type a new token-id.
# )
# # Load pipeline
# controlnet = FluxControlNetModel.from_pretrained(
# "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
# ).to(device)
# pipe = FluxControlNetPipeline.from_pretrained(
# model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
# )
# pipe.to(device)
# MAX_SEED = 1000000
# MAX_PIXEL_BUDGET = 1024 * 1024
# def process_input(input_image, upscale_factor, **kwargs):
# w, h = input_image.size
# w_original, h_original = w, h
# aspect_ratio = w / h
# was_resized = False
# if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
# warnings.warn(
# f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels."
# )
# gr.Info(
# f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing input to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels budget."
# )
# input_image = input_image.resize(
# (
# int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
# int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
# )
# )
# was_resized = True
# # resize to multiple of 8
# w, h = input_image.size
# w = w - w % 8
# h = h - h % 8
# return input_image.resize((w, h)), w_original, h_original, was_resized
# @spaces.GPU#(duration=42)
# def infer(
# seed,
# randomize_seed,
# input_image,
# num_inference_steps,
# upscale_factor,
# controlnet_conditioning_scale,
# progress=gr.Progress(track_tqdm=True),
# ):
# if randomize_seed:
# seed = random.randint(0, MAX_SEED)
# true_input_image = input_image
# input_image, w_original, h_original, was_resized = process_input(
# input_image, upscale_factor
# )
# # rescale with upscale factor
# w, h = input_image.size
# control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
# generator = torch.Generator().manual_seed(seed)
# gr.Info("Upscaling image...")
# image = pipe(
# prompt="",
# control_image=control_image,
# controlnet_conditioning_scale=controlnet_conditioning_scale,
# num_inference_steps=num_inference_steps,
# guidance_scale=3.5,
# height=control_image.size[1],
# width=control_image.size[0],
# generator=generator,
# ).images[0]
# if was_resized:
# gr.Info(
# f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
# )
# # resize to target desired size
# image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
# image.save("output.jpg")
# # convert to numpy
# return [true_input_image, image, seed]
# with gr.Blocks(css=css) as demo:
# # with gr.Column(elem_id="col-container"):
# gr.Markdown(
# f"""
# # ⚡ Flux.1-dev Upscaler ControlNet ⚡
# This is an interactive demo of [Flux.1-dev Upscaler ControlNet](https://huggingface.co/jasperai/Flux.1-dev-Controlnet-Upscaler) taking as input a low resolution image to generate a high resolution image.
# Currently running on {power_device}.
# *Note*: Even though the model can handle higher resolution images, due to GPU memory constraints, this demo was limited to a generated output not exceeding a pixel budget of 1024x1024. If the requested size exceeds that limit, the input will be first resized keeping the aspect ratio such that the output of the controlNet model does not exceed the allocated pixel budget. The output is then resized to the targeted shape using a simple resizing. This may explain some artifacts for high resolution input. To adress this, run the demo locally or consider implementing a tiling strategy. Happy upscaling! 🚀
# """
# )
# with gr.Row():
# run_button = gr.Button(value="Run")
# with gr.Row():
# with gr.Column(scale=4):
# input_im = gr.Image(label="Input Image", type="pil")
# with gr.Column(scale=1):
# num_inference_steps = gr.Slider(
# label="Number of Inference Steps",
# minimum=8,
# maximum=50,
# step=1,
# value=28,
# )
# upscale_factor = gr.Slider(
# label="Upscale Factor",
# minimum=1,
# maximum=4,
# step=1,
# value=4,
# )
# controlnet_conditioning_scale = gr.Slider(
# label="Controlnet Conditioning Scale",
# minimum=0.1,
# maximum=1.5,
# step=0.1,
# value=0.6,
# )
# seed = gr.Slider(
# label="Seed",
# minimum=0,
# maximum=MAX_SEED,
# step=1,
# value=42,
# )
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
# with gr.Row():
# result = ImageSlider(label="Input / Output", type="pil", interactive=True)
# examples = gr.Examples(
# examples=[
# # [42, False, "examples/image_1.jpg", 28, 4, 0.6],
# [42, False, "examples/image_2.jpg", 28, 4, 0.6],
# # [42, False, "examples/image_3.jpg", 28, 4, 0.6],
# [42, False, "examples/image_4.jpg", 28, 4, 0.6],
# # [42, False, "examples/image_5.jpg", 28, 4, 0.6],
# # [42, False, "examples/image_6.jpg", 28, 4, 0.6],
# ],
# inputs=[
# seed,
# randomize_seed,
# input_im,
# num_inference_steps,
# upscale_factor,
# controlnet_conditioning_scale,
# ],
# fn=infer,
# outputs=result,
# cache_examples="lazy",
# )
# # examples = gr.Examples(
# # examples=[
# # #[42, False, "examples/image_1.jpg", 28, 4, 0.6],
# # [42, False, "examples/image_2.jpg", 28, 4, 0.6],
# # #[42, False, "examples/image_3.jpg", 28, 4, 0.6],
# # #[42, False, "examples/image_4.jpg", 28, 4, 0.6],
# # [42, False, "examples/image_5.jpg", 28, 4, 0.6],
# # [42, False, "examples/image_6.jpg", 28, 4, 0.6],
# # [42, False, "examples/image_7.jpg", 28, 4, 0.6],
# # ],
# # inputs=[
# # seed,
# # randomize_seed,
# # input_im,
# # num_inference_steps,
# # upscale_factor,
# # controlnet_conditioning_scale,
# # ],
# # )
# gr.Markdown("**Disclaimer:**")
# gr.Markdown(
# "This demo is only for research purpose. Jasper cannot be held responsible for the generation of NSFW (Not Safe For Work) content through the use of this demo. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards. Jasper provides the tools, but the responsibility for their use lies with the individual user."
# )
# gr.on(
# [run_button.click],
# fn=infer,
# inputs=[
# seed,
# randomize_seed,
# input_im,
# num_inference_steps,
# upscale_factor,
# controlnet_conditioning_scale,
# ],
# outputs=result,
# show_api=False,
# # show_progress="minimal",
# )
# demo.queue().launch(share=False, show_api=False)
import logging
import random
import warnings
import os
import torch
import numpy as np
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
from PIL import Image
from huggingface_hub import snapshot_download,login
import io
import base64
from flask import Flask, request, jsonify
from concurrent.futures import ThreadPoolExecutor
from flask_cors import CORS
app = Flask(__name__)
CORS(app)
# Add config to store base64 images
app.config['image_outputs'] = {}
# ThreadPoolExecutor for managing image processing threads
executor = ThreadPoolExecutor()
# Determine the device (GPU or CPU)
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
# Load model from Huggingface Hub
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
if huggingface_token:
login(token=huggingface_token)
else:
print("Hugging Face token not found in environment variables.")
print(huggingface_token)
model_path = snapshot_download(
repo_id="black-forest-labs/FLUX.1-dev",
repo_type="model",
ignore_patterns=["*.md", "*..gitattributes"],
local_dir="FLUX.1-dev",
token=huggingface_token
)
# Load pipeline
controlnet = FluxControlNetModel.from_pretrained(
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
).to(device)
pipe = FluxControlNetPipeline.from_pretrained(
model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
)
pipe.to(device)
MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 1024 * 1024
def process_input(input_image, upscale_factor):
w, h = input_image.size
aspect_ratio = w / h
was_resized = False
# Resize if input size exceeds the maximum pixel budget
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
warnings.warn(f"Requested output image is too large. Resizing to fit within pixel budget.")
input_image = input_image.resize(
(
int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
)
)
was_resized = True
# Adjust dimensions to be a multiple of 8
w, h = input_image.size
w = w - w % 8
h = h - h % 8
return input_image.resize((w, h)), was_resized
def run_inference(process_id, input_image, upscale_factor, seed, num_inference_steps, controlnet_conditioning_scale):
input_image, was_resized = process_input(input_image, upscale_factor)
# Rescale image for ControlNet processing
w, h = input_image.size
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
# Set the random generator for inference
generator = torch.Generator().manual_seed(seed)
# Perform inference using the pipeline
image = pipe(
prompt="",
control_image=control_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=num_inference_steps,
guidance_scale=3.5,
height=control_image.size[1],
width=control_image.size[0],
generator=generator,
).images[0]
# Resize output image back to the original dimensions if needed
if was_resized:
original_size = (input_image.width * upscale_factor, input_image.height * upscale_factor)
image = image.resize(original_size)
# Convert the output image to base64
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
# Store the result in the shared dictionary
app.config['image_outputs'][process_id] = image_base64
@app.route('/infer', methods=['POST'])
def infer():
data = request.json
seed = data.get("seed", 42)
randomize_seed = data.get("randomize_seed", True)
num_inference_steps = data.get("num_inference_steps", 28)
upscale_factor = data.get("upscale_factor", 4)
controlnet_conditioning_scale = data.get("controlnet_conditioning_scale", 0.6)
# Randomize seed if specified
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Load and process the input image
input_image_data = base64.b64decode(data['input_image'])
input_image = Image.open(io.BytesIO(input_image_data))
# Create a unique process ID for this request
process_id = str(random.randint(1000, 9999))
# Set the status to 'in_progress'
app.config['image_outputs'][process_id] = None
# Run the inference in a separate thread
executor.submit(run_inference, process_id, input_image, upscale_factor, seed, num_inference_steps, controlnet_conditioning_scale)
# Return the process ID
return jsonify({
"process_id": process_id,
"message": "Processing started"
})
# Modify status endpoint to receive process_id in request body
@app.route('/status', methods=['POST'])
def status():
data = request.json
process_id = data.get('process_id')
# Check if process_id was provided
if not process_id:
return jsonify({
"status": "error",
"message": "Process ID is required"
}), 400
# Check if the process_id exists in the dictionary
if process_id not in app.config['image_outputs']:
return jsonify({
"status": "error",
"message": "Invalid process ID"
}), 404
# Check the status of the image processing
image_base64 = app.config['image_outputs'][process_id]
if image_base64 is None:
return jsonify({
"status": "in_progress"
})
else:
return jsonify({
"status": "completed",
"output_image": image_base64
})
if __name__ == '__main__':
app.run(debug=True)