File size: 6,244 Bytes
5e66110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from transformers import AutoModel, AutoTokenizer,AutoProcessor
import streamlit as st
import os
from PIL import Image
import torch
from torchvision import io
import torchvision.transforms as transforms
import random
import easyocr
import numpy as np

def start():
    st.session_state.start = True

def reset():
    del st.session_state['start']

@st.cache_data
def get_text(image_file, _model, _tokenizer):
    res = _model.chat(_tokenizer, image_file, ocr_type='ocr')
    return res

@st.cache_data
def extract_text_easyocr(_image):
    reader = easyocr.Reader(['hi'],gpu = False)
    results = reader.readtext(np.array(_image))
    # return results
    return " ".join([result[1] for result in results])

@st.cache_resource
def model():
    tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True)
    model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
    model = model.eval()
    return model, tokenizer

@st.cache_resource
def highlight_keywords(text, keywords):
    colors = generate_unique_colors(len(keywords))
    highlighted_text = text
    found_keywords = []
    for keyword, color in zip(keywords, colors):
        if keyword.lower() in text.lower():
            highlighted_text = highlighted_text.replace(keyword, f'<mark style="background-color: {color};">{keyword}</mark>')
            found_keywords.append(keyword)
    return highlighted_text, found_keywords

def search():
    st.session_state.search = True

@st.cache_data
def generate_unique_colors(n):
    colors = []
    for i in range(n):
        color = "#{:06x}".format(random.randint(0, 0xFFFFFF))
        while color in colors:
            color = "#{:06x}".format(random.randint(0, 0xFFFFFF))
        colors.append(color)
    return colors

st.title("A Web-Based Text Extraction and Retrieval System")

language = st.selectbox("Select a language:", ["English", "Hindi"])

if language == "English":
    st.subheader("You selected English!")
    st.button("Let's get started", on_click=start)
    
    if 'start' not in st.session_state:
        st.session_state.start = False
    
    if 'search' not in st.session_state:
        st.session_state.search = False
    
    if 'reset' not in st.session_state:
        st.session_state.reset = False
    
    if st.session_state.start:
        uploaded_file = st.file_uploader("Upload an Image", type=["png", "jpg", "jpeg"])
    
        if uploaded_file is not None:
            st.subheader("Uploaded Image:")
            st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
    
            MODEL, TOKENIZER = model()
    
            if not os.path.exists("images"):
                os.makedirs("images")
            with open(f"images/{uploaded_file.name}", "wb") as f:
                f.write(uploaded_file.getbuffer())
    
            extracted_text = get_text(f"images/{uploaded_file.name}", MODEL, TOKENIZER)
    
            st.subheader("Extracted Text")
            st.write(extracted_text)
    
            keywords_input = st.text_input("Enter keywords to search within the extracted text (comma-separated):")
    
            if keywords_input:
                keywords = [keyword.strip() for keyword in keywords_input.split(',')]
                highlighted_text, found_keywords = highlight_keywords(extracted_text, keywords)
                st.button("Search", on_click=search)
    
                if st.session_state.search:
                    st.subheader("Search Results:")
                    if found_keywords: 
                        st.markdown(highlighted_text, unsafe_allow_html=True)
                        st.write(f"Found keywords: {', '.join(found_keywords)}")
                    else:
                        st.warning("No keywords were found in the extracted text.")  
    
                    not_found_keywords = set(keywords) - set(found_keywords)
                    if not_found_keywords:
                        st.error(f"Keywords not found: {', '.join(not_found_keywords)}")
    
            st.button("Reset", on_click=reset)
    
elif language == "Hindi":
    st.subheader("You selected HINDI!")
    st.button("Let's get started", on_click=start)
    
    if 'start' not in st.session_state:
        st.session_state.start = False
    
    if 'search' not in st.session_state:
        st.session_state.search = False
    
    if 'reset' not in st.session_state:
        st.session_state.reset = False
    
    if st.session_state.start:
        uploaded_file = st.file_uploader("Upload an Image", type=["png", "jpg", "jpeg"])

        if uploaded_file is not None:
          st.subheader("Uploaded Image:")
          st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
          image = Image.open(uploaded_file)
          if not os.path.exists("images"):
                os.makedirs("images")
          with open(f"images/{uploaded_file.name}", "wb") as f:
                f.write(uploaded_file.getbuffer())
          extracted_text_hindi =extract_text_easyocr(image)
          st.subheader("Extracted Text:")
          st.write(extracted_text_hindi)

          keywords_input = st.text_input("Enter keywords to search within the extracted text (comma-separated):")
          if keywords_input:
                keywords = [keyword.strip() for keyword in keywords_input.split(',')]
                highlighted_text, found_keywords = highlight_keywords(extracted_text_hindi, keywords)
                st.button("Search", on_click=search)
    
                if st.session_state.search:
                    st.subheader("Search Results:")
                    if found_keywords: 
                        st.markdown(highlighted_text, unsafe_allow_html=True)
                        st.write(f"Found keywords: {', '.join(found_keywords)}")
                    else:
                        st.warning("No keywords were found in the extracted text.")  
    
                    not_found_keywords = set(keywords) - set(found_keywords)
                    if not_found_keywords:
                        st.error(f"Keywords not found: {', '.join(not_found_keywords)}")
          st.button("Reset", on_click=reset)