GREEN / README.md
IAMJB's picture
Update README.md
c38692c verified

A newer version of the Gradio SDK is available: 5.9.1

Upgrade
metadata
title: GREEN
emoji: πŸŒ–
colorFrom: pink
colorTo: indigo
sdk: gradio
sdk_version: 5.8.0
app_file: app.py
pinned: false
license: mit
python_version: 3.8

Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference

Citation

BibTeX:

@inproceedings{ostmeier-etal-2024-green,
    title = "{GREEN}: Generative Radiology Report Evaluation and Error Notation",
    author = "Ostmeier, Sophie  and
      Xu, Justin  and
      Chen, Zhihong  and
      Varma, Maya  and
      Blankemeier, Louis  and
      Bluethgen, Christian  and
      Md, Arne Edward Michalson  and
      Moseley, Michael  and
      Langlotz, Curtis  and
      Chaudhari, Akshay S  and
      Delbrouck, Jean-Benoit",
    editor = "Al-Onaizan, Yaser  and
      Bansal, Mohit  and
      Chen, Yun-Nung",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
    month = nov,
    year = "2024",
    address = "Miami, Florida, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.findings-emnlp.21",
    doi = "10.18653/v1/2024.findings-emnlp.21",
    pages = "374--390",
    abstract = "Evaluating radiology reports is a challenging problem as factual correctness is extremely important due to its medical nature. Existing automatic evaluation metrics either suffer from failing to consider factual correctness (e.g., BLEU and ROUGE) or are limited in their interpretability (e.g., F1CheXpert and F1RadGraph). In this paper, we introduce GREEN (Generative Radiology Report Evaluation and Error Notation), a radiology report generation metric that leverages the natural language understanding of language models to identify and explain clinically significant errors in candidate reports, both quantitatively and qualitatively. Compared to current metrics, GREEN offers: 1) a score aligned with expert preferences, 2) human interpretable explanations of clinically significant errors, enabling feedback loops with end-users, and 3) a lightweight open-source method that reaches the performance of commercial counterparts. We validate our GREEN metric by comparing it to GPT-4, as well as to error counts of 6 experts and preferences of 2 experts. Our method demonstrates not only higher correlation with expert error counts, but simultaneously higher alignment with expert preferences when compared to previous approaches.",
}