Voice-CPU / app.py
Staticaliza's picture
Update app.py
d6b0acb verified
raw
history blame
17.3 kB
import gradio as gr
import numpy as np
import soundfile as sf
import noisereduce as nr
import spaces
import torch
import torchaudio
import librosa
import yaml
import tempfile
import os
from huggingface_hub import hf_hub_download
from transformers import AutoFeatureExtractor, WhisperModel
from torch.nn.utils import parametrizations
from scipy.signal import butter, lfilter
from modules.commons import build_model, load_checkpoint, recursive_munch
from modules.campplus.DTDNN import CAMPPlus
from modules.bigvgan import bigvgan
from modules.rmvpe import RMVPE
from modules.audio import mel_spectrogram
# ----------------------------
# Optimization Settings
# ----------------------------
# Set the number of threads to the number of CPU cores
torch.set_num_threads(os.cpu_count())
# Enable optimized backends
torch.backends.openmp.enabled = True
torch.backends.mkldnn.enabled = True
torch.backends.cudnn.enabled = False
torch.backends.cuda.enabled = False
torch.set_grad_enabled(False)
# Force CPU usage
device = torch.device("cpu")
print(f"[DEVICE] | Using device: {device}")
# ----------------------------
# Load Models and Configuration
# ----------------------------
def load_custom_model_from_hf(repo_id, model_filename="pytorch_model.bin", config_filename="config.yml"):
os.makedirs("./checkpoints", exist_ok=True)
model_path = hf_hub_download(repo_id=repo_id, filename=model_filename, cache_dir="./checkpoints")
if config_filename is None:
return model_path
config_path = hf_hub_download(repo_id=repo_id, filename=config_filename, cache_dir="./checkpoints")
return model_path, config_path
# Load DiT model
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC", "DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth", "config_dit_mel_seed_uvit_whisper_small_wavenet.yml")
config = yaml.safe_load(open(dit_config_path, 'r'))
model_params = recursive_munch(config['model_params'])
model = build_model(model_params, stage='DiT')
# Debug: Print model keys to identify correct key
print(f"[INFO] | Model keys: {model.keys()}")
hop_length = config['preprocess_params']['spect_params']['hop_length']
sr = config['preprocess_params']['sr']
# Load DiT checkpoints
model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path, load_only_params=True, ignore_modules=[], is_distributed=False)
for key in model:
model[key].eval()
model[key].to(device)
print("[INFO] | DiT model loaded and set to eval mode.")
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
# Ensure 'CAMPPlus' is correctly imported and defined
try:
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
print("[INFO] | CAMPPlus model instantiated.")
except NameError:
print("[ERROR] | CAMPPlus is not defined. Please check the import path and ensure CAMPPlus is correctly defined.")
raise
# Set weights_only=True for security
campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None)
campplus_state = torch.load(campplus_ckpt_path, map_location="cpu", weights_only=True)
campplus_model.load_state_dict(campplus_state)
campplus_model.eval()
campplus_model.to(device)
print("[INFO] | CAMPPlus model loaded, set to eval mode, and moved to CPU.")
# Load BigVGAN model
bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False)
bigvgan_model.remove_weight_norm()
bigvgan_model = bigvgan_model.eval().to(device)
print("[INFO] | BigVGAN model loaded, weight norm removed, set to eval mode, and moved to CPU.")
# Load FAcodec model
ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')
codec_config = yaml.safe_load(open(config_path))
codec_model_params = recursive_munch(codec_config['model_params'])
codec_encoder = build_model(codec_model_params, stage="codec")
ckpt_params = torch.load(ckpt_path, map_location="cpu", weights_only=True)
for key in codec_encoder:
codec_encoder[key].load_state_dict(ckpt_params[key], strict=False)
codec_encoder = {k: v.eval().to(device) for k, v in codec_encoder.items()}
print("[INFO] | FAcodec model loaded, set to eval mode, and moved to CPU.")
# Load Whisper model with float32 and compatible size
whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer, 'whisper_name') else "openai/whisper-small"
whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float32).to(device)
del whisper_model.decoder # Remove decoder as it's not used
whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)
print(f"[INFO] | Whisper model '{whisper_name}' loaded with dtype {whisper_model.dtype} and moved to CPU.")
# Generate mel spectrograms with optimized parameters
mel_fn_args = {
"n_fft": 1024,
"win_size": 1024,
"hop_size": 256,
"num_mels": 80,
"sampling_rate": sr,
"fmin": 0,
"fmax": None,
"center": False
}
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
# Load F0 conditioned model
dit_checkpoint_path_f0, dit_config_path_f0 = load_custom_model_from_hf("Plachta/Seed-VC", "DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema.pth", "config_dit_mel_seed_uvit_whisper_base_f0_44k.yml")
config_f0 = yaml.safe_load(open(dit_config_path_f0, 'r'))
model_params_f0 = recursive_munch(config_f0['model_params'])
model_f0 = build_model(model_params_f0, stage='DiT')
hop_length_f0 = config_f0['preprocess_params']['spect_params']['hop_length']
sr_f0 = config_f0['preprocess_params']['sr']
# Load F0 model checkpoints
model_f0, _, _, _ = load_checkpoint(model_f0, None, dit_checkpoint_path_f0, load_only_params=True, ignore_modules=[], is_distributed=False)
for key in model_f0:
model_f0[key].eval()
model_f0[key].to(device)
print("[INFO] | F0 conditioned DiT model loaded and set to eval mode.")
model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
# Load F0 extractor
model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
rmvpe = RMVPE(model_path, is_half=False, device=device)
print("[INFO] | RMVPE model loaded and moved to CPU.")
mel_fn_args_f0 = {
"n_fft": config_f0['preprocess_params']['spect_params']['n_fft'],
"win_size": config_f0['preprocess_params']['spect_params']['win_length'],
"hop_size": config_f0['preprocess_params']['spect_params']['hop_length'],
"num_mels": 80, # Ensure this matches the primary model
"sampling_rate": sr_f0,
"fmin": 0,
"fmax": None,
"center": False
}
to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0)
# Load BigVGAN 44kHz model
bigvgan_44k_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x', use_cuda_kernel=False)
bigvgan_44k_model.remove_weight_norm()
bigvgan_44k_model = bigvgan_44k_model.eval().to(device)
print("[INFO] | BigVGAN 44kHz model loaded, weight norm removed, set to eval mode, and moved to CPU.")
# CSS Styling
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
# ----------------------------
# Functions
# ----------------------------
@torch.no_grad()
@torch.inference_mode()
def voice_conversion(input, reference, steps, guidance, speed):
print("[INFO] | Voice conversion started.")
inference_module, mel_fn, bigvgan_fn = model, to_mel, bigvgan_model
bitrate, sampling_rate, sr_current, hop_length_current = "320k", 16000, 22050, 256
max_context_window, overlap_wave_len = sr_current // hop_length_current * 30, 16 * hop_length_current
# Load audio using librosa
print("[INFO] | Loading source and reference audio.")
source_audio, _ = librosa.load(input, sr=sr_current)
ref_audio, _ = librosa.load(reference, sr=sr_current)
# Clip reference audio to 25 seconds
ref_audio = ref_audio[:sr_current * 25]
print(f"[INFO] | Source audio length: {len(source_audio)/sr_current:.2f}s, Reference audio length: {len(ref_audio)/sr_current:.2f}s")
# Convert audio to tensors
source_audio_tensor = torch.tensor(source_audio).unsqueeze(0).float().to(device)
ref_audio_tensor = torch.tensor(ref_audio).unsqueeze(0).float().to(device)
# Resample to 16kHz
ref_waves_16k = torchaudio.functional.resample(ref_audio_tensor, sr_current, sampling_rate)
converted_waves_16k = torchaudio.functional.resample(source_audio_tensor, sr_current, sampling_rate)
# Generate Whisper features
print("[INFO] | Generating Whisper features for source audio.")
if converted_waves_16k.size(-1) <= sampling_rate * 30:
alt_inputs = whisper_feature_extractor([converted_waves_16k.squeeze(0).cpu().numpy()], return_tensors="pt", return_attention_mask=True, sampling_rate=sampling_rate)
alt_input_features = whisper_model._mask_input_features(alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
alt_outputs = whisper_model.encoder(alt_input_features.to(torch.float32), head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True)
S_alt = alt_outputs.last_hidden_state.to(torch.float32)
S_alt = S_alt[:, :converted_waves_16k.size(-1) // 320 + 1]
print(f"[INFO] | S_alt shape: {S_alt.shape}")
else:
# Process in chunks
print("[INFO] | Processing source audio in chunks.")
overlapping_time = 5 # seconds
chunk_size = sampling_rate * 30 # 30 seconds
overlap_size = sampling_rate * overlapping_time
S_alt_list = []
buffer = None
traversed_time = 0
total_length = converted_waves_16k.size(-1)
while traversed_time < total_length:
if buffer is None:
chunk = converted_waves_16k[:, traversed_time:traversed_time + chunk_size]
else:
chunk = torch.cat([buffer, converted_waves_16k[:, traversed_time:traversed_time + chunk_size - overlap_size]], dim=-1)
alt_inputs = whisper_feature_extractor([chunk.squeeze(0).cpu().numpy()], return_tensors="pt", return_attention_mask=True, sampling_rate=sampling_rate)
alt_input_features = whisper_model._mask_input_features(alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
alt_outputs = whisper_model.encoder(alt_input_features.to(torch.float32), head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True)
S_chunk = alt_outputs.last_hidden_state.to(torch.float32)
S_chunk = S_chunk[:, :chunk.size(-1) // 320 + 1]
print(f"[INFO] | Processed chunk with S_chunk shape: {S_chunk.shape}")
if traversed_time == 0:
S_alt_list.append(S_chunk)
else:
skip_frames = 50 * overlapping_time
S_alt_list.append(S_chunk[:, skip_frames:])
buffer = chunk[:, -overlap_size:]
traversed_time += chunk_size - overlap_size
S_alt = torch.cat(S_alt_list, dim=1)
print(f"[INFO] | Final S_alt shape after chunk processing: {S_alt.shape}")
# Original Whisper features
print("[INFO] | Generating Whisper features for reference audio.")
ori_waves_16k = torchaudio.functional.resample(ref_audio_tensor, sr_current, sampling_rate)
ori_inputs = whisper_feature_extractor([ori_waves_16k.squeeze(0).cpu().numpy()], return_tensors="pt", return_attention_mask=True, sampling_rate=sampling_rate)
ori_input_features = whisper_model._mask_input_features(ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device)
ori_outputs = whisper_model.encoder(ori_input_features.to(torch.float32), head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True)
S_ori = ori_outputs.last_hidden_state.to(torch.float32)
S_ori = S_ori[:, :ori_waves_16k.size(-1) // 320 + 1]
print(f"[INFO] | S_ori shape: {S_ori.shape}")
# Generate mel spectrograms
print("[INFO] | Generating mel spectrograms.")
mel = mel_fn(source_audio_tensor.float())
mel2 = mel_fn(ref_audio_tensor.float())
print(f"[INFO] | Mel spectrogram shapes: mel={mel.shape}, mel2={mel2.shape}")
# Length adjustment
target_lengths = torch.LongTensor([int(mel.size(2) * speed)]).to(mel.device)
target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
print(f"[INFO] | Target lengths: {target_lengths.item()}, {target2_lengths.item()}")
# Extract style features
print("[INFO] | Extracting style features from reference audio.")
feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k, num_mel_bins=80, dither=0, sample_frequency=sampling_rate)
feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
style2 = campplus_model(feat2.unsqueeze(0))
print(f"[INFO] | Style2 shape: {style2.shape}")
# Length Regulation
print("[INFO] | Applying length regulation.")
cond, _, _, _, _ = inference_module.length_regulator(S_alt, ylens=target_lengths, n_quantizers=3, f0=None)
prompt_condition, _, _, _, _ = inference_module.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=3, f0=None)
print(f"[INFO] | Cond shape: {cond.shape}, Prompt condition shape: {prompt_condition.shape}")
# Initialize variables for audio generation
max_source_window = max_context_window - mel2.size(2)
processed_frames = 0
generated_wave_chunks = []
print("[INFO] | Starting inference and audio generation.")
while processed_frames < cond.size(1):
chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
is_last_chunk = processed_frames + max_source_window >= cond.size(1)
cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
# Perform inference
vc_target = inference_module.cfm.inference(cat_condition, torch.LongTensor([cat_condition.size(1)]).to(mel2.device), mel2, style2, None, steps, inference_cfg_rate=guidance)
vc_target = vc_target[:, :, mel2.size(2):]
print(f"[INFO] | vc_target shape: {vc_target.shape}")
# Generate waveform using BigVGAN
vc_wave = bigvgan_fn(vc_target.float())[0]
print(f"[INFO] | vc_wave shape: {vc_wave.shape}")
# Handle the generated waveform
output_wave = vc_wave[0].cpu().numpy()
generated_wave_chunks.append(output_wave)
# Ensure processed_frames increments correctly to avoid infinite loop
processed_frames += vc_target.size(2)
print(f"[INFO] | Processed frames updated to: {processed_frames}")
# Concatenate all generated wave chunks
final_audio = np.concatenate(generated_wave_chunks).astype(np.float32)
# Normalize the audio to ensure it's within [-1.0, 1.0]
max_val = np.max(np.abs(final_audio))
if max_val > 1.0:
final_audio = final_audio / max_val
print("[INFO] | Final audio normalized.")
# Smoothen the audio to reduce distorted audio
def butter_bandpass_filter_filtfilt(data, lowcut=80, highcut=6000, fs=sr_current, order=4):
nyq = 0.5 * fs
low = lowcut / nyq
high = highcut / nyq
b, a = butter(order, [low, high], btype='band')
y = filtfilt(b, a, data)
return y
final_audio = butter_bandpass_filter_filtfilt(final_audio)
print("[INFO] | Final audio smoothed with low-pass filter.")
noise_profile = nr.get_noise_profile(final_audio, sr_current)
final_audio = nr.reduce_noise(y=final_audio, sr=sr_current, y_noise=noise_profile, prop_decrease=1.0)
print("[INFO] | Final audio noise reduced using noisereduce.")
# Save the audio to a temporary WAV file
print("[INFO] | Saving final audio to a temporary WAV file.")
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
sf.write(tmp_file.name, final_audio, sr_current, format='WAV')
temp_file_path = tmp_file.name
print(f"[INFO] | Final audio saved to {temp_file_path}")
return temp_file_path
def cloud():
print("[CLOUD] | Space maintained.")
@spaces.GPU(duration=15)
def gpu():
return
# ----------------------------
# Gradio Interface
# ----------------------------
with gr.Blocks(css=css) as main:
with gr.Column():
gr.Markdown("🪄 Add tone to audio.")
with gr.Column():
input = gr.Audio(label="Input Audio", type="filepath")
reference_input = gr.Audio(label="Reference Audio", type="filepath")
with gr.Column():
steps = gr.Slider(label="Steps", value=1, minimum=1, maximum=100, step=1)
guidance = gr.Slider(label="Guidance", value=0.7, minimum=0.0, maximum=1.0, step=0.1)
speed = gr.Slider(label="Speed", value=1.0, minimum=0.5, maximum=2.0, step=0.1)
with gr.Column():
submit = gr.Button("▶")
maintain = gr.Button("☁️")
with gr.Column():
output = gr.Audio(label="Output", type="filepath")
submit.click(voice_conversion, inputs=[input, reference_input, steps, guidance, speed], outputs=output, queue=False)
maintain.click(cloud, inputs=[], outputs=[], queue=False)
main.launch(show_api=True)