File size: 17,334 Bytes
a6370a9
23dc4e5
 
d6b0acb
944743c
23dc4e5
 
 
 
 
 
944743c
23dc4e5
 
 
6cad840
 
23dc4e5
 
 
 
 
b382e61
23dc4e5
 
 
b382e61
23dc4e5
 
a6370a9
23dc4e5
 
 
 
 
3171475
23dc4e5
3171475
23dc4e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
464583c
23dc4e5
 
 
 
 
 
 
 
 
944743c
23dc4e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
464583c
23dc4e5
 
 
3171475
23dc4e5
 
3171475
23dc4e5
 
 
 
 
 
3a7347e
23dc4e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bb8aaa
 
 
 
 
 
 
 
23dc4e5
 
8bb8aaa
23dc4e5
 
 
 
add1014
23dc4e5
 
add1014
 
 
23dc4e5
 
 
8bb8aaa
 
23dc4e5
 
 
 
 
 
 
 
 
 
add1014
 
23dc4e5
 
 
add1014
546984b
464583c
 
23dc4e5
 
 
 
 
 
 
add1014
 
23dc4e5
 
 
 
 
 
 
 
 
464583c
546984b
464583c
 
23dc4e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
add1014
546984b
464583c
 
23dc4e5
 
 
 
 
 
 
 
 
 
 
8bb8aaa
23dc4e5
 
 
 
 
add1014
23dc4e5
 
 
 
 
 
add1014
 
23dc4e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
464583c
23dc4e5
 
 
 
 
 
 
 
 
 
 
add1014
 
23dc4e5
 
 
 
 
 
 
 
 
 
da0e734
 
d6b0acb
6cad840
d6b0acb
 
 
 
6cad840
 
d6b0acb
6cad840
d6b0acb
 
 
 
23dc4e5
 
 
 
 
 
 
 
 
 
 
8bb8aaa
 
2be57ea
23dc4e5
 
 
 
 
 
 
 
8bb8aaa
 
 
 
 
138fa16
 
8bb8aaa
 
138fa16
 
 
8bb8aaa
 
 
 
 
 
 
 
add1014
8bb8aaa
407b0ed
8bb8aaa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import gradio as gr
import numpy as np
import soundfile as sf
import noisereduce as nr
import spaces
import torch
import torchaudio
import librosa
import yaml
import tempfile
import os

from huggingface_hub import hf_hub_download
from transformers import AutoFeatureExtractor, WhisperModel
from torch.nn.utils import parametrizations
from scipy.signal import butter, lfilter

from modules.commons import build_model, load_checkpoint, recursive_munch
from modules.campplus.DTDNN import CAMPPlus
from modules.bigvgan import bigvgan
from modules.rmvpe import RMVPE
from modules.audio import mel_spectrogram

# ----------------------------
# Optimization Settings
# ----------------------------

# Set the number of threads to the number of CPU cores
torch.set_num_threads(os.cpu_count())

# Enable optimized backends
torch.backends.openmp.enabled = True
torch.backends.mkldnn.enabled = True
torch.backends.cudnn.enabled = False
torch.backends.cuda.enabled = False

torch.set_grad_enabled(False)

# Force CPU usage
device = torch.device("cpu")
print(f"[DEVICE] | Using device: {device}")

# ----------------------------
# Load Models and Configuration
# ----------------------------

def load_custom_model_from_hf(repo_id, model_filename="pytorch_model.bin", config_filename="config.yml"):
    os.makedirs("./checkpoints", exist_ok=True)
    model_path = hf_hub_download(repo_id=repo_id, filename=model_filename, cache_dir="./checkpoints")
    if config_filename is None:
        return model_path
    config_path = hf_hub_download(repo_id=repo_id, filename=config_filename, cache_dir="./checkpoints")

    return model_path, config_path
    
# Load DiT model
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC", "DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth", "config_dit_mel_seed_uvit_whisper_small_wavenet.yml")
config = yaml.safe_load(open(dit_config_path, 'r'))
model_params = recursive_munch(config['model_params'])
model = build_model(model_params, stage='DiT')

# Debug: Print model keys to identify correct key
print(f"[INFO] | Model keys: {model.keys()}")

hop_length = config['preprocess_params']['spect_params']['hop_length']
sr = config['preprocess_params']['sr']

# Load DiT checkpoints
model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path, load_only_params=True, ignore_modules=[], is_distributed=False)
for key in model:
    model[key].eval()
    model[key].to(device)
print("[INFO] | DiT model loaded and set to eval mode.")

model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)

# Ensure 'CAMPPlus' is correctly imported and defined
try:
    campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
    print("[INFO] | CAMPPlus model instantiated.")
except NameError:
    print("[ERROR] | CAMPPlus is not defined. Please check the import path and ensure CAMPPlus is correctly defined.")
    raise

# Set weights_only=True for security
campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None)
campplus_state = torch.load(campplus_ckpt_path, map_location="cpu", weights_only=True)
campplus_model.load_state_dict(campplus_state)
campplus_model.eval()
campplus_model.to(device)
print("[INFO] | CAMPPlus model loaded, set to eval mode, and moved to CPU.")

# Load BigVGAN model
bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False)
bigvgan_model.remove_weight_norm()
bigvgan_model = bigvgan_model.eval().to(device)
print("[INFO] | BigVGAN model loaded, weight norm removed, set to eval mode, and moved to CPU.")

# Load FAcodec model
ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')
codec_config = yaml.safe_load(open(config_path))
codec_model_params = recursive_munch(codec_config['model_params'])
codec_encoder = build_model(codec_model_params, stage="codec")
ckpt_params = torch.load(ckpt_path, map_location="cpu", weights_only=True)
for key in codec_encoder:
    codec_encoder[key].load_state_dict(ckpt_params[key], strict=False)
codec_encoder = {k: v.eval().to(device) for k, v in codec_encoder.items()}
print("[INFO] | FAcodec model loaded, set to eval mode, and moved to CPU.")

# Load Whisper model with float32 and compatible size
whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer, 'whisper_name') else "openai/whisper-small"
whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float32).to(device)
del whisper_model.decoder  # Remove decoder as it's not used
whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)
print(f"[INFO] | Whisper model '{whisper_name}' loaded with dtype {whisper_model.dtype} and moved to CPU.")

# Generate mel spectrograms with optimized parameters
mel_fn_args = {
    "n_fft": 1024,
    "win_size": 1024,
    "hop_size": 256,
    "num_mels": 80,
    "sampling_rate": sr,
    "fmin": 0,
    "fmax": None,
    "center": False
}
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)

# Load F0 conditioned model
dit_checkpoint_path_f0, dit_config_path_f0 = load_custom_model_from_hf("Plachta/Seed-VC", "DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema.pth", "config_dit_mel_seed_uvit_whisper_base_f0_44k.yml")
config_f0 = yaml.safe_load(open(dit_config_path_f0, 'r'))
model_params_f0 = recursive_munch(config_f0['model_params'])
model_f0 = build_model(model_params_f0, stage='DiT')

hop_length_f0 = config_f0['preprocess_params']['spect_params']['hop_length']
sr_f0 = config_f0['preprocess_params']['sr']

# Load F0 model checkpoints
model_f0, _, _, _ = load_checkpoint(model_f0, None, dit_checkpoint_path_f0, load_only_params=True, ignore_modules=[], is_distributed=False)
for key in model_f0:
    model_f0[key].eval()
    model_f0[key].to(device)
print("[INFO] | F0 conditioned DiT model loaded and set to eval mode.")

model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)

# Load F0 extractor
model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
rmvpe = RMVPE(model_path, is_half=False, device=device)
print("[INFO] | RMVPE model loaded and moved to CPU.")

mel_fn_args_f0 = {
    "n_fft": config_f0['preprocess_params']['spect_params']['n_fft'],
    "win_size": config_f0['preprocess_params']['spect_params']['win_length'],
    "hop_size": config_f0['preprocess_params']['spect_params']['hop_length'],
    "num_mels": 80,  # Ensure this matches the primary model
    "sampling_rate": sr_f0,
    "fmin": 0,
    "fmax": None,
    "center": False
}
to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0)

# Load BigVGAN 44kHz model
bigvgan_44k_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x', use_cuda_kernel=False)
bigvgan_44k_model.remove_weight_norm()
bigvgan_44k_model = bigvgan_44k_model.eval().to(device)
print("[INFO] | BigVGAN 44kHz model loaded, weight norm removed, set to eval mode, and moved to CPU.")

# CSS Styling
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

# ----------------------------
# Functions
# ----------------------------

@torch.no_grad()
@torch.inference_mode()
def voice_conversion(input, reference, steps, guidance, speed):
    print("[INFO] | Voice conversion started.")
    
    inference_module, mel_fn, bigvgan_fn = model, to_mel, bigvgan_model
    bitrate, sampling_rate, sr_current, hop_length_current = "320k", 16000, 22050, 256
    max_context_window, overlap_wave_len = sr_current // hop_length_current * 30, 16 * hop_length_current
    
    # Load audio using librosa
    print("[INFO] | Loading source and reference audio.")
    source_audio, _ = librosa.load(input, sr=sr_current)
    ref_audio, _ = librosa.load(reference, sr=sr_current)
    
    # Clip reference audio to 25 seconds
    ref_audio = ref_audio[:sr_current * 25]
    print(f"[INFO] | Source audio length: {len(source_audio)/sr_current:.2f}s, Reference audio length: {len(ref_audio)/sr_current:.2f}s")
    
    # Convert audio to tensors
    source_audio_tensor = torch.tensor(source_audio).unsqueeze(0).float().to(device)
    ref_audio_tensor = torch.tensor(ref_audio).unsqueeze(0).float().to(device)
    
    # Resample to 16kHz
    ref_waves_16k = torchaudio.functional.resample(ref_audio_tensor, sr_current, sampling_rate)
    converted_waves_16k = torchaudio.functional.resample(source_audio_tensor, sr_current, sampling_rate)
    
    # Generate Whisper features
    print("[INFO] | Generating Whisper features for source audio.")
    if converted_waves_16k.size(-1) <= sampling_rate * 30:
        alt_inputs = whisper_feature_extractor([converted_waves_16k.squeeze(0).cpu().numpy()], return_tensors="pt", return_attention_mask=True, sampling_rate=sampling_rate)
        alt_input_features = whisper_model._mask_input_features(alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
        alt_outputs = whisper_model.encoder(alt_input_features.to(torch.float32), head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True)
        S_alt = alt_outputs.last_hidden_state.to(torch.float32)
        S_alt = S_alt[:, :converted_waves_16k.size(-1) // 320 + 1]
        print(f"[INFO] | S_alt shape: {S_alt.shape}")
    else:
        # Process in chunks
        print("[INFO] | Processing source audio in chunks.")
        overlapping_time = 5  # seconds
        chunk_size = sampling_rate * 30  # 30 seconds
        overlap_size = sampling_rate * overlapping_time
        S_alt_list = []
        buffer = None
        traversed_time = 0
        total_length = converted_waves_16k.size(-1)
        
        while traversed_time < total_length:
            if buffer is None:
                chunk = converted_waves_16k[:, traversed_time:traversed_time + chunk_size]
            else:
                chunk = torch.cat([buffer, converted_waves_16k[:, traversed_time:traversed_time + chunk_size - overlap_size]], dim=-1)
            alt_inputs = whisper_feature_extractor([chunk.squeeze(0).cpu().numpy()], return_tensors="pt", return_attention_mask=True, sampling_rate=sampling_rate)
            alt_input_features = whisper_model._mask_input_features(alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
            alt_outputs = whisper_model.encoder(alt_input_features.to(torch.float32), head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True)
            S_chunk = alt_outputs.last_hidden_state.to(torch.float32)
            S_chunk = S_chunk[:, :chunk.size(-1) // 320 + 1]
            print(f"[INFO] | Processed chunk with S_chunk shape: {S_chunk.shape}")
            
            if traversed_time == 0:
                S_alt_list.append(S_chunk)
            else:
                skip_frames = 50 * overlapping_time
                S_alt_list.append(S_chunk[:, skip_frames:])
                
            buffer = chunk[:, -overlap_size:]
            traversed_time += chunk_size - overlap_size
        
        S_alt = torch.cat(S_alt_list, dim=1)
        print(f"[INFO] | Final S_alt shape after chunk processing: {S_alt.shape}")
    
    # Original Whisper features
    print("[INFO] | Generating Whisper features for reference audio.")
    ori_waves_16k = torchaudio.functional.resample(ref_audio_tensor, sr_current, sampling_rate)
    ori_inputs = whisper_feature_extractor([ori_waves_16k.squeeze(0).cpu().numpy()], return_tensors="pt", return_attention_mask=True, sampling_rate=sampling_rate)
    ori_input_features = whisper_model._mask_input_features(ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device)
    ori_outputs = whisper_model.encoder(ori_input_features.to(torch.float32), head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True)
    S_ori = ori_outputs.last_hidden_state.to(torch.float32)
    S_ori = S_ori[:, :ori_waves_16k.size(-1) // 320 + 1]
    print(f"[INFO] | S_ori shape: {S_ori.shape}")
    
    # Generate mel spectrograms
    print("[INFO] | Generating mel spectrograms.")
    mel = mel_fn(source_audio_tensor.float())
    mel2 = mel_fn(ref_audio_tensor.float())
    print(f"[INFO] | Mel spectrogram shapes: mel={mel.shape}, mel2={mel2.shape}")
    
    # Length adjustment
    target_lengths = torch.LongTensor([int(mel.size(2) * speed)]).to(mel.device)
    target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
    print(f"[INFO] | Target lengths: {target_lengths.item()}, {target2_lengths.item()}")
    
    # Extract style features
    print("[INFO] | Extracting style features from reference audio.")
    feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k, num_mel_bins=80, dither=0, sample_frequency=sampling_rate)
    feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
    style2 = campplus_model(feat2.unsqueeze(0))
    print(f"[INFO] | Style2 shape: {style2.shape}")
    
    # Length Regulation
    print("[INFO] | Applying length regulation.")
    cond, _, _, _, _ = inference_module.length_regulator(S_alt, ylens=target_lengths, n_quantizers=3, f0=None)
    prompt_condition, _, _, _, _ = inference_module.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=3, f0=None)
    print(f"[INFO] | Cond shape: {cond.shape}, Prompt condition shape: {prompt_condition.shape}")
    
    # Initialize variables for audio generation
    max_source_window = max_context_window - mel2.size(2)
    processed_frames = 0
    generated_wave_chunks = []
    
    print("[INFO] | Starting inference and audio generation.")
    
    while processed_frames < cond.size(1):
        chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
        is_last_chunk = processed_frames + max_source_window >= cond.size(1)
        cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
        
        # Perform inference
        vc_target = inference_module.cfm.inference(cat_condition, torch.LongTensor([cat_condition.size(1)]).to(mel2.device), mel2, style2, None, steps, inference_cfg_rate=guidance)
        vc_target = vc_target[:, :, mel2.size(2):]
        print(f"[INFO] | vc_target shape: {vc_target.shape}")
        
        # Generate waveform using BigVGAN
        vc_wave = bigvgan_fn(vc_target.float())[0]
        print(f"[INFO] | vc_wave shape: {vc_wave.shape}")
        
        # Handle the generated waveform
        output_wave = vc_wave[0].cpu().numpy()
        generated_wave_chunks.append(output_wave)
        
        # Ensure processed_frames increments correctly to avoid infinite loop
        processed_frames += vc_target.size(2)
        print(f"[INFO] | Processed frames updated to: {processed_frames}")
    
    # Concatenate all generated wave chunks
    final_audio = np.concatenate(generated_wave_chunks).astype(np.float32)
    
    # Normalize the audio to ensure it's within [-1.0, 1.0]
    max_val = np.max(np.abs(final_audio))
    if max_val > 1.0:
        final_audio = final_audio / max_val
    print("[INFO] | Final audio normalized.")

    # Smoothen the audio to reduce distorted audio
    def butter_bandpass_filter_filtfilt(data, lowcut=80, highcut=6000, fs=sr_current, order=4):
        nyq = 0.5 * fs
        low = lowcut / nyq
        high = highcut / nyq
        b, a = butter(order, [low, high], btype='band')
        y = filtfilt(b, a, data)
        return y

    final_audio = butter_bandpass_filter_filtfilt(final_audio)
    print("[INFO] | Final audio smoothed with low-pass filter.")

    noise_profile = nr.get_noise_profile(final_audio, sr_current)
    final_audio = nr.reduce_noise(y=final_audio, sr=sr_current, y_noise=noise_profile, prop_decrease=1.0)
    print("[INFO] | Final audio noise reduced using noisereduce.")
    
    # Save the audio to a temporary WAV file
    print("[INFO] | Saving final audio to a temporary WAV file.")
    with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
        sf.write(tmp_file.name, final_audio, sr_current, format='WAV')
        temp_file_path = tmp_file.name
        
    print(f"[INFO] | Final audio saved to {temp_file_path}")
    
    return temp_file_path
    
def cloud():
    print("[CLOUD] | Space maintained.")

@spaces.GPU(duration=15)
def gpu():
    return

# ----------------------------
# Gradio Interface
# ----------------------------

with gr.Blocks(css=css) as main:
    with gr.Column():
        gr.Markdown("🪄 Add tone to audio.")

    with gr.Column():
        input = gr.Audio(label="Input Audio", type="filepath")
        reference_input = gr.Audio(label="Reference Audio", type="filepath")
        
    with gr.Column():
        steps = gr.Slider(label="Steps", value=1, minimum=1, maximum=100, step=1)
        guidance = gr.Slider(label="Guidance", value=0.7, minimum=0.0, maximum=1.0, step=0.1)
        speed = gr.Slider(label="Speed", value=1.0, minimum=0.5, maximum=2.0, step=0.1)

    with gr.Column():
        submit = gr.Button("▶")
        maintain = gr.Button("☁️")
        
    with gr.Column():
        output = gr.Audio(label="Output", type="filepath")

    submit.click(voice_conversion, inputs=[input, reference_input, steps, guidance, speed], outputs=output, queue=False)
    maintain.click(cloud, inputs=[], outputs=[], queue=False)

main.launch(show_api=True)