Spaces:
Running
on
Zero
Running
on
Zero
# 配置环境 | |
import subprocess | |
# 克隆GitHub仓库 | |
subprocess.run(["git", "clone", "https://github.com/hiyouga/LLaMA-Factory.git"], check=True) | |
# 切换到仓库目录 | |
import os | |
os.chdir("LLaMA-Factory") | |
# 安装unsloth | |
subprocess.run(["pip", "install", "unsloth[colab-new]@git+https://github.com/unslothai/unsloth.git"], check=True) | |
# 安装xformers | |
subprocess.run(["pip", "install", "-U", "xformers==0.0.25"], check=True) | |
# 安装当前目录下的依赖 | |
subprocess.run(["pip", "install", ".[torch,bitsandbytes]"], check=True) | |
import gradio as gr | |
from llamafactory.chat import ChatModel | |
from llamafactory.extras.misc import torch_gc | |
import re | |
def split_into_sentences(text): | |
sentence_endings = re.compile(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?|\!)\s') | |
sentences = sentence_endings.split(text) | |
return [sentence.strip() for sentence in sentences if sentence] | |
def process_paragraph(paragraph, progress=gr.Progress()): | |
sentences = split_into_sentences(paragraph) | |
results = [] | |
total_sentences = len(sentences) | |
for i, sentence in enumerate(sentences): | |
progress((i + 1) / total_sentences) | |
messages.append({"role": "user", "content": sentence}) | |
sentence_response = "" | |
for new_text in chat_model.stream_chat(messages, temperature=0.7, top_p=0.9, top_k=50, max_new_tokens=300): | |
sentence_response += new_text.strip() | |
category = sentence_response.strip().lower().replace(' ', '_') | |
if category != "fair": | |
results.append((sentence, category)) | |
else: | |
results.append((sentence, "fair")) | |
messages.append({"role": "assistant", "content": sentence_response}) | |
torch_gc() | |
return results | |
%cd /root/autodl-tmp/LLaMA-Factory/ | |
args = dict( | |
model_name_or_path="princeton-nlp/Llama-3-Instruct-8B-SimPO", # 使用量化的 Llama-3-8B-Instruct 模型 | |
# model_name_or_path="StevenChen16/llama3-8b-compliance-review", | |
adapter_name_or_path="StevenChen16/llama3-8b-compliance-review-adapter", # 加载保存的 LoRA 适配器 | |
template="llama3", # 与训练时使用的模板相同 | |
finetuning_type="lora", # 与训练时使用的微调类型相同 | |
quantization_bit=8, # 加载 4-bit 量化模型 | |
use_unsloth=True, # 使用 UnslothAI 的 LoRA 优化以加速生成 | |
) | |
chat_model = ChatModel(args) | |
messages = [] | |
# 定义类型到颜色的映射 | |
label_to_color = { | |
"fair": "green", | |
"limitation_of_liability": "red", | |
"unilateral_termination": "orange", | |
"unilateral_change": "yellow", | |
"content_removal": "purple", | |
"contract_by_using": "blue", | |
"choice_of_law": "cyan", | |
"jurisdiction": "magenta", | |
"arbitration": "brown", | |
} | |
with gr.Blocks() as demo: | |
with gr.Row(equal_height=True): | |
with gr.Column(): | |
input_text = gr.Textbox(label="Input Paragraph", lines=10, placeholder="Enter the paragraph here...") | |
btn = gr.Button("Process") | |
with gr.Column(): | |
output = gr.HighlightedText(label="Processed Paragraph", color_map=label_to_color) | |
progress = gr.Progress() | |
def on_click(paragraph): | |
results = process_paragraph(paragraph, progress=progress) | |
return results | |
btn.click(on_click, inputs=input_text, outputs=[output]) | |
demo.launch(share=True) |