File size: 7,928 Bytes
34431b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b30e61
 
 
 
 
 
 
34431b1
 
2346881
 
34431b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c5ddc6
 
34431b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b30e61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34431b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5022ba1
34431b1
 
 
 
 
 
 
 
 
 
a080872
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import spaces
import random
import torch
import cv2
import insightface
import gradio as gr
import numpy as np
import os
from huggingface_hub import snapshot_download
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor
from SAK.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter_FaceID import StableDiffusionXLPipeline
from SAK.models.modeling_chatglm import ChatGLMModel
from SAK.models.tokenization_chatglm import ChatGLMTokenizer
from diffusers import AutoencoderKL
from SAK.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image

MARKDOWN = """
This demo utilizes <a href="https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/stable_diffusion_xl">Stable Diffusion XL Pipeline</a> 

Try out with different prompts using your image and do provide your feedback.

**Demo by [Sunder Ali Khowaja](https://sander-ali.github.io) - [X](https://x.com/SunderAKhowaja) -[Github](https://github.com/sander-ali) -[Hugging Face](https://huggingface.co/SunderAli17)**
"""

device = "cuda"
ckpt_dir = snapshot_download(repo_id="SunderAli17/SAK")
ckpt_dir_faceid = snapshot_download(repo_id="SunderAli17/SAK-IP-Adapter-FaceTransform-Plus")

text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_dir_faceid}/clip-vit-large-patch14-336', ignore_mismatched_sizes=True)
clip_image_encoder.to(device)
clip_image_processor = CLIPImageProcessor(size = 336, crop_size = 336)

pipe = StableDiffusionXLPipeline(
    vae = vae,
    text_encoder = text_encoder,
    tokenizer = tokenizer,
    unet = unet,
    scheduler = scheduler,
    face_clip_encoder = clip_image_encoder,
    face_clip_processor = clip_image_processor,
    force_zeros_for_empty_prompt = False,
)

class FaceInfoGenerator():
    def __init__(self, root_dir = "./.insightface/"):
        self.app = FaceAnalysis(name = 'antelopev2', root = root_dir, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
        self.app.prepare(ctx_id = 0, det_size = (640, 640))

    def get_faceinfo_one_img(self, face_image):
        face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))

        if len(face_info) == 0:
            face_info = None
        else:
            face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1]  # only use the maximum face
        return face_info

def face_bbox_to_square(bbox):
    ## l, t, r, b to square l, t, r, b
    l,t,r,b = bbox
    cent_x = (l + r) / 2
    cent_y = (t + b) / 2
    w, h = r - l, b - t
    r = max(w, h) / 2

    l0 = cent_x - r
    r0 = cent_x + r
    t0 = cent_y - r
    b0 = cent_y + r

    return [l0, t0, r0, b0]

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
face_info_generator = FaceInfoGenerator()

@spaces.GPU
def infer(prompt, 
          image = None, 
          negative_prompt = "nsfw,Face shadows,Low resolution,JPEG artifacts、Vague、bad,Neon lights", 
          seed = 66, 
          randomize_seed = False,
          guidance_scale = 5.0, 
          num_inference_steps = 50
        ):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    global pipe
    pipe = pipe.to(device)
    pipe.load_ip_adapter_faceid_plus(f'{ckpt_dir_faceid}/ipa-faceid-plus.bin', device = device)
    scale = 0.8
    pipe.set_face_fidelity_scale(scale)   

    face_info = face_info_generator.get_faceinfo_one_img(image)
    face_bbox_square = face_bbox_to_square(face_info["bbox"])
    crop_image = image.crop(face_bbox_square)
    crop_image = crop_image.resize((336, 336))
    crop_image = [crop_image]
    face_embeds = torch.from_numpy(np.array([face_info["embedding"]]))
    face_embeds = face_embeds.to(device, dtype = torch.float16)

    image = pipe(
        prompt = prompt,
        negative_prompt = negative_prompt, 
        height = 1024,
        width = 1024,
        num_inference_steps= num_inference_steps, 
        guidance_scale = guidance_scale,
        num_images_per_prompt = 1,
        generator = generator,
        face_crop_image = crop_image,
        face_insightface_embeds = face_embeds
    ).images[0]

    return image, seed


examples = [
    ["wearing a full suit sitting in a restaurant with candle lights", "image/SunderAli_Khowaja.png"],
    ["Wild cowboy hat with western town and horses in the background", "image/test2.png"]
]


css="""
#col-left {
    margin: 0 auto;
    max-width: 600px;
}
#col-right {
    margin: 0 auto;
    max-width: 750px;
}
#button {
    color: blue;
}
"""

def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content

theme = gr.themes.Soft(
    font=[gr.themes.GoogleFont('Source Code Pro'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
)
js_func = """
function refresh() {
    const url = new URL(window.location);
    if (url.searchParams.get('__theme') !== 'dark') {
        url.searchParams.set('__theme', 'dark');
        window.location.href = url.href;
    }
}
"""

with gr.Blocks(js = js_func, theme = theme) as SAK:
    gr.Markdown(MARKDOWN)
    with gr.Row():
        with gr.Column(elem_id="col-left"):
            with gr.Row():
                prompt = gr.Textbox(
                    label="Prompt",
                    placeholder="Enter your prompt",
                    lines=2
                )
            with gr.Row():
                image = gr.Image(label="Image", type="pil")
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt = gr.Textbox(
                    label="Negative prompt",
                    placeholder="Enter a negative prompt",
                    visible=True,
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=5.0,
                    )
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=10,
                        maximum=50,
                        step=1,
                        value=25,
                    )
            with gr.Row():
                button = gr.Button("Run", elem_id="button")
            
        with gr.Column(elem_id="col-right"):
            result = gr.Image(label="Result", show_label=False)
            seed_used = gr.Number(label="Seed Used")
    
    with gr.Row():
        gr.Examples(
                fn = infer,
                examples = examples,
                inputs = [prompt, image],
                outputs = [result, seed_used],
            )

    button.click(
        fn = infer,
        inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
        outputs = [result, seed_used]
    )


SAK.queue().launch(debug=True, share=True)