Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,928 Bytes
34431b1 8b30e61 34431b1 2346881 34431b1 3c5ddc6 34431b1 8b30e61 34431b1 5022ba1 34431b1 a080872 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import spaces
import random
import torch
import cv2
import insightface
import gradio as gr
import numpy as np
import os
from huggingface_hub import snapshot_download
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor
from SAK.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter_FaceID import StableDiffusionXLPipeline
from SAK.models.modeling_chatglm import ChatGLMModel
from SAK.models.tokenization_chatglm import ChatGLMTokenizer
from diffusers import AutoencoderKL
from SAK.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image
MARKDOWN = """
This demo utilizes <a href="https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/stable_diffusion_xl">Stable Diffusion XL Pipeline</a>
Try out with different prompts using your image and do provide your feedback.
**Demo by [Sunder Ali Khowaja](https://sander-ali.github.io) - [X](https://x.com/SunderAKhowaja) -[Github](https://github.com/sander-ali) -[Hugging Face](https://huggingface.co/SunderAli17)**
"""
device = "cuda"
ckpt_dir = snapshot_download(repo_id="SunderAli17/SAK")
ckpt_dir_faceid = snapshot_download(repo_id="SunderAli17/SAK-IP-Adapter-FaceTransform-Plus")
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_dir_faceid}/clip-vit-large-patch14-336', ignore_mismatched_sizes=True)
clip_image_encoder.to(device)
clip_image_processor = CLIPImageProcessor(size = 336, crop_size = 336)
pipe = StableDiffusionXLPipeline(
vae = vae,
text_encoder = text_encoder,
tokenizer = tokenizer,
unet = unet,
scheduler = scheduler,
face_clip_encoder = clip_image_encoder,
face_clip_processor = clip_image_processor,
force_zeros_for_empty_prompt = False,
)
class FaceInfoGenerator():
def __init__(self, root_dir = "./.insightface/"):
self.app = FaceAnalysis(name = 'antelopev2', root = root_dir, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
self.app.prepare(ctx_id = 0, det_size = (640, 640))
def get_faceinfo_one_img(self, face_image):
face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
if len(face_info) == 0:
face_info = None
else:
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
return face_info
def face_bbox_to_square(bbox):
## l, t, r, b to square l, t, r, b
l,t,r,b = bbox
cent_x = (l + r) / 2
cent_y = (t + b) / 2
w, h = r - l, b - t
r = max(w, h) / 2
l0 = cent_x - r
r0 = cent_x + r
t0 = cent_y - r
b0 = cent_y + r
return [l0, t0, r0, b0]
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
face_info_generator = FaceInfoGenerator()
@spaces.GPU
def infer(prompt,
image = None,
negative_prompt = "nsfw,Face shadows,Low resolution,JPEG artifacts、Vague、bad,Neon lights",
seed = 66,
randomize_seed = False,
guidance_scale = 5.0,
num_inference_steps = 50
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
global pipe
pipe = pipe.to(device)
pipe.load_ip_adapter_faceid_plus(f'{ckpt_dir_faceid}/ipa-faceid-plus.bin', device = device)
scale = 0.8
pipe.set_face_fidelity_scale(scale)
face_info = face_info_generator.get_faceinfo_one_img(image)
face_bbox_square = face_bbox_to_square(face_info["bbox"])
crop_image = image.crop(face_bbox_square)
crop_image = crop_image.resize((336, 336))
crop_image = [crop_image]
face_embeds = torch.from_numpy(np.array([face_info["embedding"]]))
face_embeds = face_embeds.to(device, dtype = torch.float16)
image = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
height = 1024,
width = 1024,
num_inference_steps= num_inference_steps,
guidance_scale = guidance_scale,
num_images_per_prompt = 1,
generator = generator,
face_crop_image = crop_image,
face_insightface_embeds = face_embeds
).images[0]
return image, seed
examples = [
["wearing a full suit sitting in a restaurant with candle lights", "image/SunderAli_Khowaja.png"],
["Wild cowboy hat with western town and horses in the background", "image/test2.png"]
]
css="""
#col-left {
margin: 0 auto;
max-width: 600px;
}
#col-right {
margin: 0 auto;
max-width: 750px;
}
#button {
color: blue;
}
"""
def load_description(fp):
with open(fp, 'r', encoding='utf-8') as f:
content = f.read()
return content
theme = gr.themes.Soft(
font=[gr.themes.GoogleFont('Source Code Pro'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
)
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
with gr.Blocks(js = js_func, theme = theme) as SAK:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column(elem_id="col-left"):
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt",
lines=2
)
with gr.Row():
image = gr.Image(label="Image", type="pil")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=50,
step=1,
value=25,
)
with gr.Row():
button = gr.Button("Run", elem_id="button")
with gr.Column(elem_id="col-right"):
result = gr.Image(label="Result", show_label=False)
seed_used = gr.Number(label="Seed Used")
with gr.Row():
gr.Examples(
fn = infer,
examples = examples,
inputs = [prompt, image],
outputs = [result, seed_used],
)
button.click(
fn = infer,
inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
outputs = [result, seed_used]
)
SAK.queue().launch(debug=True, share=True)
|