SunderAli17's picture
Update app.py
3c5ddc6 verified
raw
history blame
7.93 kB
import spaces
import random
import torch
import cv2
import insightface
import gradio as gr
import numpy as np
import os
from huggingface_hub import snapshot_download
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor
from SAK.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter_FaceID import StableDiffusionXLPipeline
from SAK.models.modeling_chatglm import ChatGLMModel
from SAK.models.tokenization_chatglm import ChatGLMTokenizer
from diffusers import AutoencoderKL
from SAK.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image
MARKDOWN = """
This demo utilizes <a href="https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/stable_diffusion_xl">Stable Diffusion XL Pipeline</a>
Try out with different prompts using your image and do provide your feedback.
**Demo by [Sunder Ali Khowaja](https://sander-ali.github.io) - [X](https://x.com/SunderAKhowaja) -[Github](https://github.com/sander-ali) -[Hugging Face](https://huggingface.co/SunderAli17)**
"""
device = "cuda"
ckpt_dir = snapshot_download(repo_id="SunderAli17/SAK")
ckpt_dir_faceid = snapshot_download(repo_id="SunderAli17/SAK-IP-Adapter-FaceTransform-Plus")
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_dir_faceid}/clip-vit-large-patch14-336', ignore_mismatched_sizes=True)
clip_image_encoder.to(device)
clip_image_processor = CLIPImageProcessor(size = 336, crop_size = 336)
pipe = StableDiffusionXLPipeline(
vae = vae,
text_encoder = text_encoder,
tokenizer = tokenizer,
unet = unet,
scheduler = scheduler,
face_clip_encoder = clip_image_encoder,
face_clip_processor = clip_image_processor,
force_zeros_for_empty_prompt = False,
)
class FaceInfoGenerator():
def __init__(self, root_dir = "./.insightface/"):
self.app = FaceAnalysis(name = 'antelopev2', root = root_dir, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
self.app.prepare(ctx_id = 0, det_size = (640, 640))
def get_faceinfo_one_img(self, face_image):
face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
if len(face_info) == 0:
face_info = None
else:
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
return face_info
def face_bbox_to_square(bbox):
## l, t, r, b to square l, t, r, b
l,t,r,b = bbox
cent_x = (l + r) / 2
cent_y = (t + b) / 2
w, h = r - l, b - t
r = max(w, h) / 2
l0 = cent_x - r
r0 = cent_x + r
t0 = cent_y - r
b0 = cent_y + r
return [l0, t0, r0, b0]
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
face_info_generator = FaceInfoGenerator()
@spaces.GPU
def infer(prompt,
image = None,
negative_prompt = "nsfw,Face shadows,Low resolution,JPEG artifacts、Vague、bad,Neon lights",
seed = 66,
randomize_seed = False,
guidance_scale = 5.0,
num_inference_steps = 50
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
global pipe
pipe = pipe.to(device)
pipe.load_ip_adapter_faceid_plus(f'{ckpt_dir_faceid}/ipa-faceid-plus.bin', device = device)
scale = 0.8
pipe.set_face_fidelity_scale(scale)
face_info = face_info_generator.get_faceinfo_one_img(image)
face_bbox_square = face_bbox_to_square(face_info["bbox"])
crop_image = image.crop(face_bbox_square)
crop_image = crop_image.resize((336, 336))
crop_image = [crop_image]
face_embeds = torch.from_numpy(np.array([face_info["embedding"]]))
face_embeds = face_embeds.to(device, dtype = torch.float16)
image = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
height = 1024,
width = 1024,
num_inference_steps= num_inference_steps,
guidance_scale = guidance_scale,
num_images_per_prompt = 1,
generator = generator,
face_crop_image = crop_image,
face_insightface_embeds = face_embeds
).images[0]
return image, seed
examples = [
["wearing a full suit sitting in a restaurant with candle lights", "image/SunderAli_Khowaja.png"],
["Wild cowboy hat with western town and horses in the background", "image/test2.png"]
]
css="""
#col-left {
margin: 0 auto;
max-width: 600px;
}
#col-right {
margin: 0 auto;
max-width: 750px;
}
#button {
color: blue;
}
"""
def load_description(fp):
with open(fp, 'r', encoding='utf-8') as f:
content = f.read()
return content
theme = gr.themes.Soft(
font=[gr.themes.GoogleFont('Source Code Pro'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
)
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
with gr.Blocks(js = js_func, theme = theme) as SAK:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column(elem_id="col-left"):
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt",
lines=2
)
with gr.Row():
image = gr.Image(label="Image", type="pil")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=50,
step=1,
value=25,
)
with gr.Row():
button = gr.Button("Run", elem_id="button")
with gr.Column(elem_id="col-right"):
result = gr.Image(label="Result", show_label=False)
seed_used = gr.Number(label="Seed Used")
with gr.Row():
gr.Examples(
fn = infer,
examples = examples,
inputs = [prompt, image],
outputs = [result, seed_used],
)
button.click(
fn = infer,
inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
outputs = [result, seed_used]
)
SAK.queue().launch(debug=True, share=True)