Hecheng0625's picture
Upload 61 files
7ee3434 verified
## SingVisio Webpage
This is the source code for the SingVisio Webpage. This README file will introduce the project and provide an installation guide. For introduction to SingVisio, please check this [README.md](../../../egs/visualization/SingVisio/README.md) file.
### Tech Stack
- [Tailwind CSS](https://tailwindcss.com/)
- [Flowbite](https://flowbite.com/)
- [D3.js](https://d3js.org/)
- [Driver.js](https://driverjs.com/)
### Structure
- `index.html`: The entry point file.
- `config`: Contains JSON configuration files loaded by `index.html`.
- `img`: Image files.
- `resources`: Contains CSS styles and JavaScript files.
- `init.js`: Loads the configuration and initializes variables.
- `function.js`: Houses the functions used in this project.
- `event.js`: Binds webpage mouse and keyboard events to functions.
- `Dockerfile`: For building a Docker image if deployment is needed.
### Configuration
Before installation, you need to configure the data path in the `config/default.json` file.
To better understand our project, please note that this configuration pertains to our pre-processed data. If you want to visualize your own data, you can follow the guide below to properly set up the system.
1. **Update the Data Configuration** in the `config/default.json` file.
SingVisio will read the configuration from this JSON file and render the webpage. Be aware that any errors in the JSON file may cause the system to shut down.
```json
{
"pathData": {
"<mode_name>": { // supports multiple modes
"users": ["basic", "advanced"], // mode choice: "basic" or "advanced"
"multi": ["<id>"], // song_id, sourcesinger_id, or target_id. Set to false to disable. Enables multiple choices for the configured checkbox.
"curve": true, // set to true if the metric curve is needed
"referenceMap": { // configures reference paths when multiple choices are enabled.
"<sourcesinger_id>": [ // e.g., m4singer_Tenor-6
"<path_to_wav>", // e.g., Tenor-6_寂寞沙洲冷_0002
]
},
"data": [
{ // supports multiple datasets
"dataset": "<dataset_name>",
"basePath": "<path_to_the_processed_data>",
"pathMap": {
"<sourcesinger_id>": {
"songs": [
"<song_id>" // set song ID; supports multiple IDs
],
"targets": [
"<target_id>" // set target singer ID; supports multiple IDs
]
}
}
}
]
}
},
"mapToName": {
"<map_from>": "<map_to>"
},
"mapToSong": {
"<map_from>": "<map_to>"
},
"mapToSpace": {
"<map_from>": "<map_to>"
},
"picTypes": [
"<pic_type>" // supports multiple types
],
"evaluation_data": [
{ // supports multiple data sets
"target": "<target_id>",
"sourcesinger": "<sourcesinger_id>",
"song": "<song_id>",
"best": [
"<best_metric>" // activated when clicking the respective metric
]
},
],
"colorList": [
"<color_hex_code>" // supports multiple colors
],
"histogramData": [
{ // displayed in the top left graph
"type": "high", // "high" or "low"; "high" means the higher, the better
"name": "<metric_name>",
"value": <metric_value>
}
]
}
```
2. **Change the Data Source Path**
The total size of our pre-processed data is approximately 60-70 GB. We provide an online host server, and the server path (`baseLink`) can be modified in the `index.html` file on line 15.
If you prefer to host the data on your local computer, you can set the `baseLink` value to an empty string as shown below. This will direct the server to read data from your local `data` folder.
```html
<script>
const baseLink = ''; // do not end with '/'
</script>
```
### Installation
This project does not require a build process. There are multiple ways to run it, but here we introduce the simplest method:
1. Install Python 3.10 and required packages.
```bash
pip install numpy scikit-learn flask flask_cors gunicorn
```
2. Run the following command to start the HTTP server:
```bash
cd webpage
gunicorn -w 8 -b 0.0.0.0:8080 server:app
```
3. After starting the HTTP web server, open the following link in your browser: [http://localhost:8080/](http://localhost:8080/)