T145's picture
Use official test keys
190123d
from urllib.parse import quote
import gradio as gr
import numpy as np
import urllib3
from bs4 import BeautifulSoup
from datasets import load_dataset
from huggingface_hub import (
CommitOperationAdd,
EvalResult,
ModelCard,
RepoUrl,
create_commit,
)
from huggingface_hub.repocard_data import eval_results_to_model_index
from pytablewriter import MarkdownTableWriter
COMMIT_DESCRIPTION = """This is an automated PR created with [this space](https://huggingface.co/spaces/T145/open-llm-leaderboard-results-to-modelcard)!
The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.
Please report any issues here: https://huggingface.co/spaces/T145/open-llm-leaderboard-results-to-modelcard/discussions"""
# Keys are named after the backend keys
# https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard/blob/main/backend/README.md#leaderboard
KEY_IFEVAL = "IFEval"
KEY_BBH = "BBH"
KEY_MATH = "MATH Lvl 5"
KEY_GPQA = "GPQA"
KEY_MUSR = "MUSR"
KEY_MMLU = "MMLU-PRO"
def normalize_within_range(value, lower_bound=0, higher_bound=1):
return (np.clip(value - lower_bound, 0, None)) / (higher_bound - lower_bound) * 100
def calculate_results(repo: str, pool: urllib3.PoolManager):
try:
base_url = f"https://huggingface.co/datasets/open-llm-leaderboard/results/tree/main/{repo}"
html = pool.request("GET", base_url).data
soup = BeautifulSoup(html, "html.parser")
dl_link = soup.find_all(title="Download file")[-1]["href"]
data = pool.request("GET", f"https://huggingface.co{dl_link}").json()
del base_url
del html
del soup
del dl_link
precision = data["config"]["model_dtype"]
revision = data["config"]["model_revision"]
# Normalize BBH subtasks scores
bbh_scores = []
for subtask_key in data["group_subtasks"]["leaderboard_bbh"]:
num_choices = len(data["configs"][subtask_key]["doc_to_choice"])
if subtask_key in data["results"]:
bbh_raw_score = data["results"][subtask_key]["acc_norm,none"]
lower_bound = 1 / num_choices
normalized_score = normalize_within_range(bbh_raw_score, lower_bound, 1.0)
bbh_scores.append(normalized_score)
# Average BBH score
bbh_score = sum(bbh_scores) / len(bbh_scores)
bbh_score = float(round(bbh_score, 2))
# Calculate the MATH score
math_raw_score = data["results"]["leaderboard_math_hard"]["exact_match,none"]
math_score = normalize_within_range(math_raw_score, 0, 1.0)
math_score = float(round(math_score, 2))
# Normalize GPQA scores
gpqa_raw_score = data["results"]["leaderboard_gpqa"]["acc_norm,none"]
gpqa_score = normalize_within_range(gpqa_raw_score, 0.25, 1.0)
gpqa_score = float(round(gpqa_score, 2))
# Normalize MMLU PRO scores
mmlu_raw_score = data["results"]["leaderboard_mmlu_pro"]["acc,none"]
mmlu_score = normalize_within_range(mmlu_raw_score, 0.1, 1.0)
mmlu_score = float(round(mmlu_score, 2))
# Compute IFEval
ifeval_inst_score = (
data["results"]["leaderboard_ifeval"]["inst_level_strict_acc,none"] * 100
)
ifeval_prompt_score = (
data["results"]["leaderboard_ifeval"]["prompt_level_strict_acc,none"] * 100
)
# Average IFEval scores
ifeval_score = (ifeval_inst_score + ifeval_prompt_score) / 2
ifeval_score = float(round(ifeval_score, 2))
# Normalize MUSR scores
musr_scores = []
for subtask_key in data["group_subtasks"]["leaderboard_musr"]:
subtask_config = data["configs"][subtask_key]
dataset = load_dataset(subtask_config["dataset_path"], split=subtask_config["test_split"])
num_choices = max(len(eval(question["choices"])) for question in dataset)
musr_raw_score = data["results"][subtask_key]["acc_norm,none"]
lower_bound = 1 / num_choices
normalized_score = normalize_within_range(musr_raw_score, lower_bound, 1.0)
musr_scores.append(normalized_score)
del dataset
musr_score = sum(musr_scores) / len(musr_scores)
musr_score = float(round(musr_score, 2))
# Calculate overall score
average_score = (
bbh_score + math_score + gpqa_score + mmlu_score + musr_score + ifeval_score
) / 6
average_score = float(round(average_score, 2))
results = {
"Model": repo,
"Precision": precision,
"Revision": revision,
"Average": average_score,
KEY_IFEVAL: ifeval_score,
KEY_BBH: bbh_score,
KEY_MATH: math_score,
KEY_GPQA: gpqa_score,
KEY_MUSR: musr_score,
KEY_MMLU: mmlu_score,
}
# pprint(results, sort_dicts=False)
return results
except Exception: # likely will be from no results being available
return None
def get_details_url(repo: str):
author, model = repo.split("/")
return f"https://huggingface.co/datasets/open-llm-leaderboard/{author}__{model}-details"
def get_contents_url(repo: str):
param = quote(repo, safe="")
return f"https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q={param}&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc"
def get_query_url(repo: str):
param = quote(repo, safe="")
return f"https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search={param}"
def get_task_summary(results):
return {
KEY_IFEVAL: {
"dataset_type": "wis-k/instruction-following-eval",
"dataset_name": "IFEval (0-Shot)",
"metric_type": "inst_level_strict_acc and prompt_level_strict_acc",
"metric_value": results[KEY_IFEVAL],
"dataset_config": None,
"dataset_split": "train",
"dataset_args": {"num_few_shot": 0},
"metric_name": "averaged accuracy",
},
KEY_BBH: {
"dataset_type": "SaylorTwift/bbh",
"dataset_name": "BBH (3-Shot)",
"metric_type": "acc_norm",
"metric_value": results[KEY_BBH],
"dataset_config": None,
"dataset_split": "test",
"dataset_args": {"num_few_shot": 3},
"metric_name": "normalized accuracy",
},
KEY_MATH: {
"dataset_type": "lighteval/MATH-Hard",
"dataset_name": "MATH Lvl 5 (4-Shot)",
"metric_type": "exact_match",
"metric_value": results[KEY_MATH],
"dataset_config": None,
"dataset_split": "test",
"dataset_args": {"num_few_shot": 4},
"metric_name": "exact match",
},
KEY_GPQA: {
"dataset_type": "Idavidrein/gpqa",
"dataset_name": "GPQA (0-shot)",
"metric_type": "acc_norm",
"metric_value": results[KEY_GPQA],
"dataset_config": None,
"dataset_split": "train",
"dataset_args": {"num_few_shot": 0},
"metric_name": "acc_norm",
},
KEY_MUSR: {
"dataset_type": "TAUR-Lab/MuSR",
"dataset_name": "MuSR (0-shot)",
"metric_type": "acc_norm",
"metric_value": results[KEY_MUSR],
"dataset_config": None,
"dataset_split": None, # three test splits
"dataset_args": {"num_few_shot": 0},
"metric_name": "acc_norm",
},
KEY_MMLU: {
"dataset_type": "TIGER-Lab/MMLU-Pro",
"dataset_name": "MMLU-PRO (5-shot)",
"metric_type": "acc",
"metric_value": results[KEY_MMLU],
"dataset_config": "main",
"dataset_split": "test",
"dataset_args": {"num_few_shot": 5},
"metric_name": "accuracy",
},
}
def get_eval_results(repo: str, results: dict):
task_summary = get_task_summary(results)
table = MarkdownTableWriter()
table.headers = ["Metric", "Value (%)"]
table.value_matrix = [["**Average**", results["Average"]]] + [
[v["dataset_name"], v["metric_value"]] for v in task_summary.values()
]
text = f"""
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here]({get_details_url(repo)})!
Summarized results can be found [here]({get_contents_url(repo)})!
{table.dumps()}
"""
return text
def get_edited_yaml_readme(repo: str, results: dict, token: str | None):
card = ModelCard.load(repo, token=token)
common = {
"task_type": "text-generation",
"task_name": "Text Generation",
"source_name": "Open LLM Leaderboard",
"source_url": get_query_url(repo),
}
tasks_results = get_task_summary(results)
if not card.data[
"eval_results"
]: # No results reported yet, we initialize the metadata
card.data["model-index"] = eval_results_to_model_index(
repo.split("/")[1],
[EvalResult(**task, **common) for task in tasks_results.values()],
)
else: # We add the new evaluations
for task in tasks_results.values():
cur_result = EvalResult(**task, **common)
if any(
result.is_equal_except_value(cur_result)
for result in card.data["eval_results"]
):
continue
card.data["eval_results"].append(cur_result)
return str(card)
def commit(
repo,
pr_number=None, # specify pr number if you want to edit it
message="Adding Evaluation Results",
oauth_token: gr.OAuthToken | None = None,
):
if not oauth_token:
raise gr.Warning("You are not logged in. Click on 'Sign in with Huggingface' to log in.")
else:
token = oauth_token
if repo.startswith("https://huggingface.co/"):
try:
repo = RepoUrl(repo).repo_id
except Exception as e:
raise gr.Error(f"Not a valid repo id: {str(repo)}") from e
with urllib3.PoolManager() as pool:
results = calculate_results(repo, pool)
edited = {"revision": f"refs/pr/{pr_number}"} if pr_number else {"create_pr": True}
try:
try: # check if there is a readme already
readme_text = get_edited_yaml_readme(
repo, results, token=token
) + get_eval_results(repo, results)
except Exception as e:
if "Repo card metadata block was not found." in str(e): # There is no readme
readme_text = get_edited_yaml_readme(repo, results, token=token)
else:
print(f"Something went wrong: {e}")
ops = [
CommitOperationAdd(
path_in_repo="README.md", path_or_fileobj=readme_text.encode()
)
]
commit = create_commit(
repo_id=repo,
token=token,
operations=ops,
commit_message=message,
commit_description=COMMIT_DESCRIPTION,
repo_type="model",
**edited,
).pr_url
return commit
except Exception as e:
if "Discussions are disabled for this repo" in str(e):
return "Discussions disabled"
elif "Cannot access gated repo" in str(e):
return "Gated repo"
elif "Repository Not Found" in str(e):
return "Repository Not Found"
else:
return e