Spaces:
Running
on
Zero
Running
on
Zero
Make the header mini to focus on the arena
#1
by
multimodalart
HF staff
- opened
This view is limited to 50 files because it contains too many changes.
See the raw diff here.
- .gitattributes +0 -1
- .gitignore +0 -175
- .gitmodules +0 -0
- .idea/.gitignore +0 -8
- .idea/GenAI-Arena.iml +0 -15
- .idea/inspectionProfiles/profiles_settings.xml +0 -6
- .idea/modules.xml +0 -8
- .idea/vcs.xml +0 -6
- README.md +8 -44
- app.py +0 -104
- arena_elo/LICENSE +0 -21
- arena_elo/README.md +0 -46
- arena_elo/elo_rating/__init__.py +0 -0
- arena_elo/elo_rating/basic_stats.py +0 -227
- arena_elo/elo_rating/clean_battle_data.py +0 -378
- arena_elo/elo_rating/elo_analysis.py +0 -413
- arena_elo/elo_rating/generate_leaderboard.py +0 -68
- arena_elo/elo_rating/inspect_conv_rating.py +0 -234
- arena_elo/elo_rating/inspect_cost.py +0 -177
- arena_elo/elo_rating/inspect_elo_rating_pkl.py +0 -33
- arena_elo/elo_rating/upload_battle_data.py +0 -168
- arena_elo/elo_rating/utils.py +0 -91
- arena_elo/evaluator/convert_to_evaluator_data.py +0 -134
- arena_elo/evaluator/rating_analysis.ipynb +0 -321
- arena_elo/get_latest_data.sh +0 -17
- arena_elo/pyproject.toml +0 -28
- arena_elo/requirements.txt +0 -28
- arena_elo/results/20240220/elo_results_image_editing.pkl +0 -3
- arena_elo/results/20240220/elo_results_t2i_generation.pkl +0 -3
- arena_elo/results/20240220/image_editing_leaderboard.csv +0 -8
- arena_elo/results/20240220/t2i_generation_leaderboard.csv +0 -7
- arena_elo/results/20240315/clean_battle_image_editing.json +0 -794
- arena_elo/results/20240315/elo_results_image_editing.pkl +0 -3
- arena_elo/results/20240315/image_editing_leaderboard.csv +0 -8
- arena_elo/results/20240327/clean_battle_t2i_generation.json +0 -0
- arena_elo/results/20240327/elo_results_t2i_generation.pkl +0 -3
- arena_elo/results/20240327/t2i_generation_leaderboard.csv +0 -10
- arena_elo/results/20240328/clean_battle_image_editing.json +0 -890
- arena_elo/results/20240328/elo_results_image_editing.pkl +0 -3
- arena_elo/results/20240328/image_editing_leaderboard.csv +0 -8
- arena_elo/results/20240330/clean_battle_t2i_generation.json +0 -0
- arena_elo/results/20240330/elo_results_t2i_generation.pkl +0 -3
- arena_elo/results/20240330/t2i_generation_leaderboard.csv +0 -10
- arena_elo/results/20240408/clean_battle_t2i_generation.json +0 -0
- arena_elo/results/20240408/elo_results_t2i_generation.pkl +0 -3
- arena_elo/results/20240408/t2i_generation_leaderboard.csv +0 -10
- arena_elo/results/20240411/clean_battle_image_editing.json +0 -906
- arena_elo/results/20240411/clean_battle_t2i_generation.json +0 -0
- arena_elo/results/20240411/elo_results_image_editing.pkl +0 -3
- arena_elo/results/20240411/elo_results_t2i_generation.pkl +0 -3
.gitattributes
CHANGED
@@ -33,4 +33,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
-
examples/duck.jpg filter=lfs diff=lfs merge=lfs -text
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
.gitignore
DELETED
@@ -1,175 +0,0 @@
|
|
1 |
-
checkpoints/
|
2 |
-
|
3 |
-
# Byte-compiled / optimized / DLL files
|
4 |
-
__pycache__/
|
5 |
-
*.py[cod]
|
6 |
-
*$py.class
|
7 |
-
src/
|
8 |
-
# C extensions
|
9 |
-
*.so
|
10 |
-
temp
|
11 |
-
|
12 |
-
# Distribution / packaging
|
13 |
-
.Python
|
14 |
-
build/
|
15 |
-
develop-eggs/
|
16 |
-
dist/
|
17 |
-
downloads/
|
18 |
-
eggs/
|
19 |
-
.eggs/
|
20 |
-
lib/
|
21 |
-
lib64/
|
22 |
-
parts/
|
23 |
-
sdist/
|
24 |
-
var/
|
25 |
-
wheels/
|
26 |
-
share/python-wheels/
|
27 |
-
*.egg-info/
|
28 |
-
.installed.cfg
|
29 |
-
*.egg
|
30 |
-
MANIFEST
|
31 |
-
|
32 |
-
# PyInstaller
|
33 |
-
# Usually these files are written by a python script from a template
|
34 |
-
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
35 |
-
*.manifest
|
36 |
-
*.spec
|
37 |
-
|
38 |
-
# Installer logs
|
39 |
-
pip-log.txt
|
40 |
-
pip-delete-this-directory.txt
|
41 |
-
|
42 |
-
# Unit test / coverage reports
|
43 |
-
htmlcov/
|
44 |
-
.tox/
|
45 |
-
.nox/
|
46 |
-
.coverage
|
47 |
-
.coverage.*
|
48 |
-
.cache
|
49 |
-
nosetests.xml
|
50 |
-
coverage.xml
|
51 |
-
*.cover
|
52 |
-
*.py,cover
|
53 |
-
.hypothesis/
|
54 |
-
.pytest_cache/
|
55 |
-
cover/
|
56 |
-
|
57 |
-
# Translations
|
58 |
-
*.mo
|
59 |
-
*.pot
|
60 |
-
|
61 |
-
# Django stuff:
|
62 |
-
*.log
|
63 |
-
local_settings.py
|
64 |
-
db.sqlite3
|
65 |
-
db.sqlite3-journal
|
66 |
-
|
67 |
-
# Flask stuff:
|
68 |
-
instance/
|
69 |
-
.webassets-cache
|
70 |
-
|
71 |
-
# Scrapy stuff:
|
72 |
-
.scrapy
|
73 |
-
|
74 |
-
# Sphinx documentation
|
75 |
-
docs/_build/
|
76 |
-
|
77 |
-
# PyBuilder
|
78 |
-
.pybuilder/
|
79 |
-
target/
|
80 |
-
|
81 |
-
# Jupyter Notebook
|
82 |
-
.ipynb_checkpoints
|
83 |
-
|
84 |
-
# IPython
|
85 |
-
profile_default/
|
86 |
-
ipython_config.py
|
87 |
-
|
88 |
-
# pyenv
|
89 |
-
# For a library or package, you might want to ignore these files since the code is
|
90 |
-
# intended to run in multiple environments; otherwise, check them in:
|
91 |
-
# .python-version
|
92 |
-
|
93 |
-
# pipenv
|
94 |
-
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
95 |
-
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
96 |
-
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
97 |
-
# install all needed dependencies.
|
98 |
-
#Pipfile.lock
|
99 |
-
|
100 |
-
# poetry
|
101 |
-
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
102 |
-
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
103 |
-
# commonly ignored for libraries.
|
104 |
-
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
105 |
-
#poetry.lock
|
106 |
-
|
107 |
-
# pdm
|
108 |
-
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
109 |
-
#pdm.lock
|
110 |
-
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
111 |
-
# in version control.
|
112 |
-
# https://pdm.fming.dev/#use-with-ide
|
113 |
-
.pdm.toml
|
114 |
-
|
115 |
-
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
116 |
-
__pypackages__/
|
117 |
-
|
118 |
-
# Celery stuff
|
119 |
-
celerybeat-schedule
|
120 |
-
celerybeat.pid
|
121 |
-
|
122 |
-
# SageMath parsed files
|
123 |
-
*.sage.py
|
124 |
-
|
125 |
-
# Environments
|
126 |
-
.env
|
127 |
-
.venv
|
128 |
-
env/
|
129 |
-
venv/
|
130 |
-
ENV/
|
131 |
-
env.bak/
|
132 |
-
venv.bak/
|
133 |
-
|
134 |
-
# Spyder project settings
|
135 |
-
.spyderproject
|
136 |
-
.spyproject
|
137 |
-
|
138 |
-
# Rope project settings
|
139 |
-
.ropeproject
|
140 |
-
|
141 |
-
# mkdocs documentation
|
142 |
-
/site
|
143 |
-
|
144 |
-
# mypy
|
145 |
-
.mypy_cache/
|
146 |
-
.dmypy.json
|
147 |
-
dmypy.json
|
148 |
-
|
149 |
-
# Pyre type checker
|
150 |
-
.pyre/
|
151 |
-
|
152 |
-
# pytype static type analyzer
|
153 |
-
.pytype/
|
154 |
-
|
155 |
-
# Cython debug symbols
|
156 |
-
cython_debug/
|
157 |
-
|
158 |
-
# PyCharm
|
159 |
-
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
160 |
-
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
161 |
-
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
162 |
-
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
163 |
-
#.idea/
|
164 |
-
/tmp
|
165 |
-
/logs
|
166 |
-
/*.json
|
167 |
-
/*.jpg
|
168 |
-
/*.ipynb
|
169 |
-
/GenAI-Arena-hf-logs
|
170 |
-
/3DGen-Arena-logs*
|
171 |
-
/tmp*
|
172 |
-
/arena_elo/results/**/*.jpg
|
173 |
-
/arena_elo/results/**/*.png
|
174 |
-
/arena_elo/6_04_log_results
|
175 |
-
/arena_elo/update_elo_rating_6_04.sh
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.gitmodules
DELETED
File without changes
|
.idea/.gitignore
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
# Default ignored files
|
2 |
-
/shelf/
|
3 |
-
/workspace.xml
|
4 |
-
# Editor-based HTTP Client requests
|
5 |
-
/httpRequests/
|
6 |
-
# Datasource local storage ignored files
|
7 |
-
/dataSources/
|
8 |
-
/dataSources.local.xml
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.idea/GenAI-Arena.iml
DELETED
@@ -1,15 +0,0 @@
|
|
1 |
-
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
-
<module type="PYTHON_MODULE" version="4">
|
3 |
-
<component name="NewModuleRootManager">
|
4 |
-
<content url="file://$MODULE_DIR$" />
|
5 |
-
<orderEntry type="inheritedJdk" />
|
6 |
-
<orderEntry type="sourceFolder" forTests="false" />
|
7 |
-
</component>
|
8 |
-
<component name="PyDocumentationSettings">
|
9 |
-
<option name="format" value="GOOGLE" />
|
10 |
-
<option name="myDocStringFormat" value="Google" />
|
11 |
-
</component>
|
12 |
-
<component name="TemplatesService">
|
13 |
-
<option name="TEMPLATE_CONFIGURATION" value="Jinja2" />
|
14 |
-
</component>
|
15 |
-
</module>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.idea/inspectionProfiles/profiles_settings.xml
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
<component name="InspectionProjectProfileManager">
|
2 |
-
<settings>
|
3 |
-
<option name="USE_PROJECT_PROFILE" value="false" />
|
4 |
-
<version value="1.0" />
|
5 |
-
</settings>
|
6 |
-
</component>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.idea/modules.xml
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
-
<project version="4">
|
3 |
-
<component name="ProjectModuleManager">
|
4 |
-
<modules>
|
5 |
-
<module fileurl="file://$PROJECT_DIR$/.idea/GenAI-Arena.iml" filepath="$PROJECT_DIR$/.idea/GenAI-Arena.iml" />
|
6 |
-
</modules>
|
7 |
-
</component>
|
8 |
-
</project>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.idea/vcs.xml
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
-
<project version="4">
|
3 |
-
<component name="VcsDirectoryMappings">
|
4 |
-
<mapping directory="" vcs="Git" />
|
5 |
-
</component>
|
6 |
-
</project>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -1,47 +1,11 @@
|
|
1 |
---
|
2 |
-
title: GenAI
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk:
|
7 |
-
|
8 |
-
|
9 |
-
app_file: app.py
|
10 |
-
pinned: true
|
11 |
-
license: mit
|
12 |
-
tags:
|
13 |
-
- arena
|
14 |
-
- leaderboard
|
15 |
-
short_description: Realtime Image/Video Gen AI Arena
|
16 |
---
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
- for cuda 11.8
|
21 |
-
```bash
|
22 |
-
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
|
23 |
-
pip3 install -U xformers --index-url https://download.pytorch.org/whl/cu118
|
24 |
-
pip install -r requirements.txt
|
25 |
-
```
|
26 |
-
- for cuda 12.1
|
27 |
-
```bash
|
28 |
-
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
|
29 |
-
pip install -r requirements.txt
|
30 |
-
```
|
31 |
-
|
32 |
-
## Start Hugging Face UI
|
33 |
-
```bash
|
34 |
-
python app.py
|
35 |
-
```
|
36 |
-
|
37 |
-
## Start Log server
|
38 |
-
```bash
|
39 |
-
uvicorn serve.log_server:app --reload --port 22005 --host 0.0.0.0
|
40 |
-
```
|
41 |
-
|
42 |
-
## Update leaderboard
|
43 |
-
```bash
|
44 |
-
cd arena_elo && bash update_leaderboard.sh
|
45 |
-
```
|
46 |
-
|
47 |
-
Paper: arxiv.org/abs/2406.04485
|
|
|
1 |
---
|
2 |
+
title: GenAI-Arena
|
3 |
+
emoji: 🚀
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: static
|
7 |
+
pinned: false
|
8 |
+
header: mini
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
DELETED
@@ -1,104 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import os
|
3 |
-
from serve.gradio_web import *
|
4 |
-
from serve.gradio_web_image_editing import *
|
5 |
-
from serve.gradio_web_video_generation import *
|
6 |
-
from serve.leaderboard import build_leaderboard_tab
|
7 |
-
from model.model_manager import ModelManager
|
8 |
-
from pathlib import Path
|
9 |
-
from serve.constants import SERVER_PORT, ROOT_PATH, ELO_RESULTS_DIR
|
10 |
-
|
11 |
-
def build_combine_demo(models, elo_results_file, leaderboard_table_file):
|
12 |
-
|
13 |
-
with gr.Blocks(
|
14 |
-
title="Play with Open Vision Models",
|
15 |
-
theme=gr.themes.Default(),
|
16 |
-
css=block_css,
|
17 |
-
) as demo:
|
18 |
-
with gr.Tabs() as tabs_combine:
|
19 |
-
with gr.Tab("Image Generation", id=0):
|
20 |
-
with gr.Tabs() as tabs_ig:
|
21 |
-
with gr.Tab("Generation Arena (battle)", id=0):
|
22 |
-
build_side_by_side_ui_anony(models)
|
23 |
-
|
24 |
-
with gr.Tab("Generation Arena (side-by-side)", id=1):
|
25 |
-
build_side_by_side_ui_named(models)
|
26 |
-
|
27 |
-
with gr.Tab("Generation Playground", id=2): #Direct Chat
|
28 |
-
build_single_model_ui(models, add_promotion_links=True)
|
29 |
-
if elo_results_file:
|
30 |
-
with gr.Tab("Generation Leaderboard", id=3):
|
31 |
-
build_leaderboard_tab(elo_results_file['t2i_generation'], leaderboard_table_file['t2i_generation'])
|
32 |
-
|
33 |
-
with gr.Tab("Image Edition", id=5):
|
34 |
-
with gr.Tabs() as tabs_ie:
|
35 |
-
with gr.Tab("Edition Arena (battle)", id=5):
|
36 |
-
build_side_by_side_ui_anony_ie(models)
|
37 |
-
|
38 |
-
with gr.Tab("Edition Arena (side-by-side)", id=6):
|
39 |
-
build_side_by_side_ui_named_ie(models)
|
40 |
-
|
41 |
-
with gr.Tab("Edition Playground", id=7): #Direct Chat
|
42 |
-
build_single_model_ui_ie(models, add_promotion_links=True)
|
43 |
-
if elo_results_file:
|
44 |
-
with gr.Tab("Edition Leaderboard", id=8):
|
45 |
-
build_leaderboard_tab(elo_results_file['image_editing'], leaderboard_table_file['image_editing'])
|
46 |
-
|
47 |
-
with gr.Tab("Video Generation", id=10):
|
48 |
-
with gr.Tabs() as tabs_vg:
|
49 |
-
with gr.Tab("Video Generation Arena (battle)", id=10):
|
50 |
-
build_side_by_side_ui_anony_vg(models)
|
51 |
-
|
52 |
-
with gr.Tab("Video Generation Arena (side-by-side)", id=11):
|
53 |
-
build_side_by_side_ui_named_vg(models)
|
54 |
-
|
55 |
-
with gr.Tab("Video Generation Playground", id=12): #Direct Chat
|
56 |
-
build_single_model_ui_vg(models, add_promotion_links=True)
|
57 |
-
if elo_results_file and 'video_generation' in elo_results_file:
|
58 |
-
with gr.Tab("Video Generation Leaderboard", id=13):
|
59 |
-
build_leaderboard_tab(elo_results_file['video_generation'], leaderboard_table_file['video_generation'])
|
60 |
-
with gr.Tab("About Us", id=4):
|
61 |
-
build_about()
|
62 |
-
|
63 |
-
return demo
|
64 |
-
|
65 |
-
|
66 |
-
def load_elo_results(elo_results_dir):
|
67 |
-
from collections import defaultdict
|
68 |
-
elo_results_file = defaultdict(lambda: None)
|
69 |
-
leaderboard_table_file = defaultdict(lambda: None)
|
70 |
-
if elo_results_dir is not None:
|
71 |
-
elo_results_dir = Path(elo_results_dir)
|
72 |
-
elo_results_file = {}
|
73 |
-
leaderboard_table_file = {}
|
74 |
-
for file in elo_results_dir.glob('elo_results_*.pkl'):
|
75 |
-
if 't2i_generation' in file.name:
|
76 |
-
elo_results_file['t2i_generation'] = file
|
77 |
-
elif 'image_editing' in file.name:
|
78 |
-
elo_results_file['image_editing'] = file
|
79 |
-
elif 'video_generation' in file.name:
|
80 |
-
elo_results_file['video_generation'] = file
|
81 |
-
else:
|
82 |
-
raise ValueError(f"Unknown file name: {file.name}")
|
83 |
-
for file in elo_results_dir.glob('*_leaderboard.csv'):
|
84 |
-
if 't2i_generation' in file.name:
|
85 |
-
leaderboard_table_file['t2i_generation'] = file
|
86 |
-
elif 'image_editing' in file.name:
|
87 |
-
leaderboard_table_file['image_editing'] = file
|
88 |
-
elif 'video_generation' in file.name:
|
89 |
-
leaderboard_table_file['video_generation'] = file
|
90 |
-
else:
|
91 |
-
raise ValueError(f"Unknown file name: {file.name}")
|
92 |
-
|
93 |
-
return elo_results_file, leaderboard_table_file
|
94 |
-
|
95 |
-
if __name__ == "__main__":
|
96 |
-
server_port = int(SERVER_PORT)
|
97 |
-
root_path = ROOT_PATH
|
98 |
-
elo_results_dir = ELO_RESULTS_DIR
|
99 |
-
models = ModelManager(enable_nsfw=False, do_pre_download=True, do_debug_packages=True)
|
100 |
-
# models = ModelManager(enable_nsfw=False, do_pre_download=False, do_debug_packages=False)
|
101 |
-
|
102 |
-
elo_results_file, leaderboard_table_file = load_elo_results(elo_results_dir)
|
103 |
-
demo = build_combine_demo(models, elo_results_file, leaderboard_table_file)
|
104 |
-
demo.queue(max_size=20).launch(server_port=server_port, root_path=ROOT_PATH)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/LICENSE
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
MIT License
|
2 |
-
|
3 |
-
Copyright (c) 2024 WildVision-Bench
|
4 |
-
|
5 |
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
-
of this software and associated documentation files (the "Software"), to deal
|
7 |
-
in the Software without restriction, including without limitation the rights
|
8 |
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
-
copies of the Software, and to permit persons to whom the Software is
|
10 |
-
furnished to do so, subject to the following conditions:
|
11 |
-
|
12 |
-
The above copyright notice and this permission notice shall be included in all
|
13 |
-
copies or substantial portions of the Software.
|
14 |
-
|
15 |
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
-
SOFTWARE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/README.md
DELETED
@@ -1,46 +0,0 @@
|
|
1 |
-
## Computing the Elo Ratings
|
2 |
-
|
3 |
-
|
4 |
-
```bash
|
5 |
-
apt-get -y install pkg-config
|
6 |
-
pip install -r requirements.txt
|
7 |
-
```
|
8 |
-
|
9 |
-
|
10 |
-
### to update the leaderboard
|
11 |
-
|
12 |
-
```bash
|
13 |
-
export LOGDIR="/path/to/your/logdir"
|
14 |
-
bash update_elo_rating.sh
|
15 |
-
```
|
16 |
-
|
17 |
-
### to inspect the leaderboard status
|
18 |
-
```bash
|
19 |
-
python -m elo_rating.inspect_elo_rating_pkl
|
20 |
-
```
|
21 |
-
|
22 |
-
### to inspect the collected data status and cost
|
23 |
-
```bash
|
24 |
-
export LOGDIR="/path/to/your/logdir"
|
25 |
-
python -m elo_rating.inspect_cost
|
26 |
-
```
|
27 |
-
|
28 |
-
### to upload the battle data to hugging face🤗
|
29 |
-
```bash
|
30 |
-
export HUGGINGFACE_TOKEN="your_huggingface_token"
|
31 |
-
bash get_latest_data.sh
|
32 |
-
python -m elo_rating.upload_battle_data --repo_id "WildVision/wildvision-bench" --log_dir "./vision-arena-logs/"
|
33 |
-
```
|
34 |
-
|
35 |
-
### to upload the chat data to hugging face🤗
|
36 |
-
```bash
|
37 |
-
export HUGGINGFACE_TOKEN="your_huggingface_token"
|
38 |
-
bash get_latest_data.sh
|
39 |
-
python -m elo_rating.upload_chat_data --repo_id "WildVision/wildvision-bench" --log_dir "./vision-arena-logs/"
|
40 |
-
```
|
41 |
-
|
42 |
-
|
43 |
-
### to get the collected data
|
44 |
-
```bash
|
45 |
-
python -m
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/elo_rating/__init__.py
DELETED
File without changes
|
arena_elo/elo_rating/basic_stats.py
DELETED
@@ -1,227 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import code
|
3 |
-
import datetime
|
4 |
-
import json
|
5 |
-
import os
|
6 |
-
from pytz import timezone
|
7 |
-
import time
|
8 |
-
|
9 |
-
import pandas as pd # pandas>=2.0.3
|
10 |
-
import plotly.express as px
|
11 |
-
import plotly.graph_objects as go
|
12 |
-
from tqdm import tqdm
|
13 |
-
|
14 |
-
NUM_SERVERS = 1
|
15 |
-
LOG_ROOT_DIR = os.getenv("LOGDIR", None)
|
16 |
-
if LOG_ROOT_DIR is None:
|
17 |
-
raise ValueError("LOGDIR environment variable not set, please set it by `export LOGDIR=...`")
|
18 |
-
|
19 |
-
def get_log_files(max_num_files=None):
|
20 |
-
log_root = os.path.expanduser(LOG_ROOT_DIR)
|
21 |
-
filenames = []
|
22 |
-
if NUM_SERVERS == 1:
|
23 |
-
for filename in os.listdir(log_root):
|
24 |
-
if filename.endswith("-conv.json"):
|
25 |
-
filepath = f"{log_root}/{filename}"
|
26 |
-
name_tstamp_tuple = (filepath, os.path.getmtime(filepath))
|
27 |
-
filenames.append(name_tstamp_tuple)
|
28 |
-
else:
|
29 |
-
for i in range(NUM_SERVERS):
|
30 |
-
for filename in os.listdir(f"{log_root}/server{i}"):
|
31 |
-
if filename.endswith("-conv.json"):
|
32 |
-
filepath = f"{log_root}/server{i}/{filename}"
|
33 |
-
name_tstamp_tuple = (filepath, os.path.getmtime(filepath))
|
34 |
-
filenames.append(name_tstamp_tuple)
|
35 |
-
# sort by tstamp
|
36 |
-
filenames = sorted(filenames, key=lambda x: x[1])
|
37 |
-
filenames = [x[0] for x in filenames]
|
38 |
-
|
39 |
-
max_num_files = max_num_files or len(filenames)
|
40 |
-
filenames = filenames[-max_num_files:]
|
41 |
-
return filenames
|
42 |
-
|
43 |
-
|
44 |
-
def load_log_files(filename):
|
45 |
-
data = []
|
46 |
-
for retry in range(5):
|
47 |
-
try:
|
48 |
-
lines = open(filename).readlines()
|
49 |
-
break
|
50 |
-
except FileNotFoundError:
|
51 |
-
time.sleep(2)
|
52 |
-
|
53 |
-
for l in lines:
|
54 |
-
row = json.loads(l)
|
55 |
-
data.append(
|
56 |
-
dict(
|
57 |
-
type=row["type"],
|
58 |
-
tstamp=row["tstamp"],
|
59 |
-
model=row.get("model", ""),
|
60 |
-
models=row.get("models", ["", ""]),
|
61 |
-
)
|
62 |
-
)
|
63 |
-
return data
|
64 |
-
|
65 |
-
|
66 |
-
def load_log_files_parallel(log_files, num_threads=16):
|
67 |
-
data_all = []
|
68 |
-
from multiprocessing import Pool
|
69 |
-
|
70 |
-
with Pool(num_threads) as p:
|
71 |
-
ret_all = list(tqdm(p.imap(load_log_files, log_files), total=len(log_files)))
|
72 |
-
for ret in ret_all:
|
73 |
-
data_all.extend(ret)
|
74 |
-
return data_all
|
75 |
-
|
76 |
-
|
77 |
-
def get_anony_vote_df(df):
|
78 |
-
anony_vote_df = df[
|
79 |
-
df["type"].isin(["leftvote", "rightvote", "tievote", "bothbad_vote"])
|
80 |
-
]
|
81 |
-
anony_vote_df = anony_vote_df[anony_vote_df["models"].apply(lambda x: x[0] == "")]
|
82 |
-
return anony_vote_df
|
83 |
-
|
84 |
-
|
85 |
-
def merge_counts(series, on, names):
|
86 |
-
ret = pd.merge(series[0], series[1], on=on)
|
87 |
-
for i in range(2, len(series)):
|
88 |
-
ret = pd.merge(ret, series[i], on=on)
|
89 |
-
ret = ret.reset_index()
|
90 |
-
old_names = list(ret.columns)[-len(series) :]
|
91 |
-
rename = {old_name: new_name for old_name, new_name in zip(old_names, names)}
|
92 |
-
ret = ret.rename(columns=rename)
|
93 |
-
return ret
|
94 |
-
|
95 |
-
|
96 |
-
def report_basic_stats(log_files):
|
97 |
-
df_all = load_log_files_parallel(log_files)
|
98 |
-
df_all = pd.DataFrame(df_all)
|
99 |
-
now_t = df_all["tstamp"].max()
|
100 |
-
df_1_hour = df_all[df_all["tstamp"] > (now_t - 3600)]
|
101 |
-
df_1_day = df_all[df_all["tstamp"] > (now_t - 3600 * 24)]
|
102 |
-
anony_vote_df_all = get_anony_vote_df(df_all)
|
103 |
-
|
104 |
-
# Chat trends
|
105 |
-
chat_dates = [
|
106 |
-
datetime.datetime.fromtimestamp(x, tz=timezone("US/Pacific")).strftime(
|
107 |
-
"%Y-%m-%d"
|
108 |
-
)
|
109 |
-
for x in df_all[df_all["type"] == "chat"]["tstamp"]
|
110 |
-
]
|
111 |
-
chat_dates_counts = pd.value_counts(chat_dates)
|
112 |
-
vote_dates = [
|
113 |
-
datetime.datetime.fromtimestamp(x, tz=timezone("US/Pacific")).strftime(
|
114 |
-
"%Y-%m-%d"
|
115 |
-
)
|
116 |
-
for x in anony_vote_df_all["tstamp"]
|
117 |
-
]
|
118 |
-
vote_dates_counts = pd.value_counts(vote_dates)
|
119 |
-
chat_dates_bar = go.Figure(
|
120 |
-
data=[
|
121 |
-
go.Bar(
|
122 |
-
name="Anony. Vote",
|
123 |
-
x=vote_dates_counts.index,
|
124 |
-
y=vote_dates_counts,
|
125 |
-
text=[f"{val:.0f}" for val in vote_dates_counts],
|
126 |
-
textposition="auto",
|
127 |
-
),
|
128 |
-
go.Bar(
|
129 |
-
name="Chat",
|
130 |
-
x=chat_dates_counts.index,
|
131 |
-
y=chat_dates_counts,
|
132 |
-
text=[f"{val:.0f}" for val in chat_dates_counts],
|
133 |
-
textposition="auto",
|
134 |
-
),
|
135 |
-
]
|
136 |
-
)
|
137 |
-
chat_dates_bar.update_layout(
|
138 |
-
barmode="stack",
|
139 |
-
xaxis_title="Dates",
|
140 |
-
yaxis_title="Count",
|
141 |
-
height=300,
|
142 |
-
width=1200,
|
143 |
-
)
|
144 |
-
|
145 |
-
# Model call counts
|
146 |
-
model_hist_all = df_all[df_all["type"] == "chat"]["model"].value_counts()
|
147 |
-
model_hist_1_day = df_1_day[df_1_day["type"] == "chat"]["model"].value_counts()
|
148 |
-
model_hist_1_hour = df_1_hour[df_1_hour["type"] == "chat"]["model"].value_counts()
|
149 |
-
model_hist = merge_counts(
|
150 |
-
[model_hist_all, model_hist_1_day, model_hist_1_hour],
|
151 |
-
on="model",
|
152 |
-
names=["All", "Last Day", "Last Hour"],
|
153 |
-
)
|
154 |
-
model_hist_md = model_hist.to_markdown(index=False, tablefmt="github")
|
155 |
-
|
156 |
-
# Action counts
|
157 |
-
action_hist_all = df_all["type"].value_counts()
|
158 |
-
action_hist_1_day = df_1_day["type"].value_counts()
|
159 |
-
action_hist_1_hour = df_1_hour["type"].value_counts()
|
160 |
-
action_hist = merge_counts(
|
161 |
-
[action_hist_all, action_hist_1_day, action_hist_1_hour],
|
162 |
-
on="type",
|
163 |
-
names=["All", "Last Day", "Last Hour"],
|
164 |
-
)
|
165 |
-
action_hist_md = action_hist.to_markdown(index=False, tablefmt="github")
|
166 |
-
|
167 |
-
# Anony vote counts
|
168 |
-
anony_vote_hist_all = anony_vote_df_all["type"].value_counts()
|
169 |
-
anony_vote_df_1_day = get_anony_vote_df(df_1_day)
|
170 |
-
anony_vote_hist_1_day = anony_vote_df_1_day["type"].value_counts()
|
171 |
-
# anony_vote_df_1_hour = get_anony_vote_df(df_1_hour)
|
172 |
-
# anony_vote_hist_1_hour = anony_vote_df_1_hour["type"].value_counts()
|
173 |
-
anony_vote_hist = merge_counts(
|
174 |
-
[anony_vote_hist_all, anony_vote_hist_1_day],
|
175 |
-
on="type",
|
176 |
-
names=["All", "Last Day"],
|
177 |
-
)
|
178 |
-
anony_vote_hist_md = anony_vote_hist.to_markdown(index=False, tablefmt="github")
|
179 |
-
|
180 |
-
# Last 24 hours
|
181 |
-
chat_1_day = df_1_day[df_1_day["type"] == "chat"]
|
182 |
-
num_chats_last_24_hours = []
|
183 |
-
base = df_1_day["tstamp"].min()
|
184 |
-
for i in range(24, 0, -1):
|
185 |
-
left = base + (i - 1) * 3600
|
186 |
-
right = base + i * 3600
|
187 |
-
num = ((chat_1_day["tstamp"] >= left) & (chat_1_day["tstamp"] < right)).sum()
|
188 |
-
num_chats_last_24_hours.append(num)
|
189 |
-
times = [
|
190 |
-
datetime.datetime.fromtimestamp(
|
191 |
-
base + i * 3600, tz=timezone("US/Pacific")
|
192 |
-
).strftime("%Y-%m-%d %H:%M:%S %Z")
|
193 |
-
for i in range(24, 0, -1)
|
194 |
-
]
|
195 |
-
last_24_hours_df = pd.DataFrame({"time": times, "value": num_chats_last_24_hours})
|
196 |
-
last_24_hours_md = last_24_hours_df.to_markdown(index=False, tablefmt="github")
|
197 |
-
|
198 |
-
# Last update datetime
|
199 |
-
last_updated_tstamp = now_t
|
200 |
-
last_updated_datetime = datetime.datetime.fromtimestamp(
|
201 |
-
last_updated_tstamp, tz=timezone("US/Pacific")
|
202 |
-
).strftime("%Y-%m-%d %H:%M:%S %Z")
|
203 |
-
|
204 |
-
# code.interact(local=locals())
|
205 |
-
|
206 |
-
return {
|
207 |
-
"chat_dates_bar": chat_dates_bar,
|
208 |
-
"model_hist_md": model_hist_md,
|
209 |
-
"action_hist_md": action_hist_md,
|
210 |
-
"anony_vote_hist_md": anony_vote_hist_md,
|
211 |
-
"num_chats_last_24_hours": last_24_hours_md,
|
212 |
-
"last_updated_datetime": last_updated_datetime,
|
213 |
-
}
|
214 |
-
|
215 |
-
|
216 |
-
if __name__ == "__main__":
|
217 |
-
parser = argparse.ArgumentParser()
|
218 |
-
parser.add_argument("--max-num-files", type=int)
|
219 |
-
args = parser.parse_args()
|
220 |
-
|
221 |
-
log_files = get_log_files(args.max_num_files)
|
222 |
-
basic_stats = report_basic_stats(log_files)
|
223 |
-
|
224 |
-
print(basic_stats["action_hist_md"] + "\n")
|
225 |
-
print(basic_stats["model_hist_md"] + "\n")
|
226 |
-
print(basic_stats["anony_vote_hist_md"] + "\n")
|
227 |
-
print(basic_stats["num_chats_last_24_hours"] + "\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/elo_rating/clean_battle_data.py
DELETED
@@ -1,378 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Clean chatbot arena battle log.
|
3 |
-
|
4 |
-
Usage:
|
5 |
-
python3 clean_battle_data.py --mode conv_release
|
6 |
-
"""
|
7 |
-
import argparse
|
8 |
-
import datetime
|
9 |
-
import json
|
10 |
-
import os
|
11 |
-
import sys
|
12 |
-
from pytz import timezone
|
13 |
-
import time
|
14 |
-
import PIL
|
15 |
-
from PIL import ImageFile
|
16 |
-
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
17 |
-
|
18 |
-
from tqdm import tqdm
|
19 |
-
|
20 |
-
from .basic_stats import get_log_files, NUM_SERVERS, LOG_ROOT_DIR
|
21 |
-
from .utils import detect_language, get_time_stamp_from_date, get_model_info
|
22 |
-
|
23 |
-
VOTES = ["tievote", "leftvote", "rightvote", "bothbad_vote"]
|
24 |
-
|
25 |
-
def parse_model_name(model_name):
|
26 |
-
return NotImplementedError()
|
27 |
-
return model_source, model_name, model_type
|
28 |
-
|
29 |
-
def remove_html(raw):
|
30 |
-
if raw.startswith("<h3>"):
|
31 |
-
return raw[raw.find(": ") + 2 : -len("</h3>\n")]
|
32 |
-
if raw.startswith("### Model A: ") or raw.startswith("### Model B: "):
|
33 |
-
return raw[13:]
|
34 |
-
return raw
|
35 |
-
|
36 |
-
|
37 |
-
def to_openai_format(messages):
|
38 |
-
roles = ["user", "assistant"]
|
39 |
-
ret = []
|
40 |
-
for i, x in enumerate(messages):
|
41 |
-
ret.append({"role": roles[i % 2], "content": x[1]})
|
42 |
-
return ret
|
43 |
-
|
44 |
-
|
45 |
-
def replace_model_name(old_name, tstamp):
|
46 |
-
replace_dict = {
|
47 |
-
"PlayGroundV2": "PlayGround V2",
|
48 |
-
"PlayGroundV2.5": "PlayGround V2.5",
|
49 |
-
"FluxTimestep": "FLUX1schnell",
|
50 |
-
"FluxGuidance": "FLUX1dev",
|
51 |
-
"CogVideoX": "CogVideoX-2B"
|
52 |
-
}
|
53 |
-
if old_name in replace_dict:
|
54 |
-
old_name = replace_dict[old_name]
|
55 |
-
if "Flux" in old_name:
|
56 |
-
print(f"Invalid model names: {old_name}")
|
57 |
-
exit(1)
|
58 |
-
model_info = get_model_info(old_name)
|
59 |
-
old_name = model_info.simple_name
|
60 |
-
return old_name
|
61 |
-
|
62 |
-
|
63 |
-
def read_file(filename):
|
64 |
-
data = []
|
65 |
-
for retry in range(5):
|
66 |
-
try:
|
67 |
-
# lines = open(filename).readlines()
|
68 |
-
for l in open(filename):
|
69 |
-
row = json.loads(l)
|
70 |
-
if row["type"] in VOTES:
|
71 |
-
data.append(row)
|
72 |
-
break
|
73 |
-
except FileNotFoundError:
|
74 |
-
time.sleep(2)
|
75 |
-
except json.JSONDecodeError:
|
76 |
-
print(f"Error in reading {filename}")
|
77 |
-
print(row)
|
78 |
-
exit(0)
|
79 |
-
return data
|
80 |
-
|
81 |
-
|
82 |
-
def read_file_parallel(log_files, num_threads=16):
|
83 |
-
data_all = []
|
84 |
-
if num_threads == 1:
|
85 |
-
for log_file in tqdm(log_files, desc="Reading"):
|
86 |
-
data_all.extend(read_file(log_file))
|
87 |
-
return data_all
|
88 |
-
else:
|
89 |
-
from multiprocessing import Pool
|
90 |
-
|
91 |
-
with Pool(num_threads) as p:
|
92 |
-
ret_all = list(tqdm(p.imap(read_file, log_files), total=len(log_files)))
|
93 |
-
for ret in ret_all:
|
94 |
-
data_all.extend(ret)
|
95 |
-
return data_all
|
96 |
-
|
97 |
-
def load_image(image_path):
|
98 |
-
try:
|
99 |
-
return PIL.Image.open(image_path)
|
100 |
-
except:
|
101 |
-
return None
|
102 |
-
|
103 |
-
def clean_battle_data(
|
104 |
-
log_files, exclude_model_names, ban_ip_list=None, sanitize_ip=False, mode="simple", task_name="image_editing"
|
105 |
-
):
|
106 |
-
data = read_file_parallel(log_files, num_threads=1)
|
107 |
-
|
108 |
-
convert_type = {
|
109 |
-
"leftvote": "model_a",
|
110 |
-
"rightvote": "model_b",
|
111 |
-
"tievote": "tie",
|
112 |
-
"bothbad_vote": "tie (bothbad)",
|
113 |
-
}
|
114 |
-
|
115 |
-
all_models = set()
|
116 |
-
all_ips = dict()
|
117 |
-
ct_anony = 0
|
118 |
-
ct_invalid = 0
|
119 |
-
ct_leaked_identity = 0
|
120 |
-
ct_banned = 0
|
121 |
-
battles = []
|
122 |
-
for row in tqdm(data, desc="Cleaning"):
|
123 |
-
if row["models"][0] is None or row["models"][1] is None:
|
124 |
-
print(f"Invalid model names: {row['models']}")
|
125 |
-
continue
|
126 |
-
|
127 |
-
# Resolve model names
|
128 |
-
models_public = [remove_html(row["models"][0]), remove_html(row["models"][1])]
|
129 |
-
if "model_name" in row["states"][0]:
|
130 |
-
models_hidden = [
|
131 |
-
row["states"][0]["model_name"],
|
132 |
-
row["states"][1]["model_name"],
|
133 |
-
]
|
134 |
-
if models_hidden[0] is None:
|
135 |
-
models_hidden = models_public
|
136 |
-
else:
|
137 |
-
models_hidden = models_public
|
138 |
-
|
139 |
-
if (models_public[0] == "" and models_public[1] != "") or (
|
140 |
-
models_public[1] == "" and models_public[0] != ""
|
141 |
-
):
|
142 |
-
ct_invalid += 1
|
143 |
-
print(f"Invalid model names: {models_public}")
|
144 |
-
continue
|
145 |
-
|
146 |
-
if models_public[0] == "" or models_public[0] == "Model A":
|
147 |
-
anony = True
|
148 |
-
models = models_hidden
|
149 |
-
ct_anony += 1
|
150 |
-
else:
|
151 |
-
anony = False
|
152 |
-
models = models_public
|
153 |
-
if not models_public == models_hidden:
|
154 |
-
print(f"Model names mismatch: {models_public} vs {models_hidden}")
|
155 |
-
ct_invalid += 1
|
156 |
-
continue
|
157 |
-
|
158 |
-
def preprocess_model_name(m):
|
159 |
-
if m == "Playground v2":
|
160 |
-
return 'playground_PlayGroundV2_generation'
|
161 |
-
if m == "Playground v2.5":
|
162 |
-
return 'playground_PlayGroundV2.5_generation'
|
163 |
-
return m
|
164 |
-
models = [preprocess_model_name(m) for m in models]
|
165 |
-
|
166 |
-
# Replace bard with palm
|
167 |
-
if task_name == "image_editing":
|
168 |
-
valid = True
|
169 |
-
for _model in models:
|
170 |
-
try:
|
171 |
-
platform, model_name, task = _model.split("_")
|
172 |
-
except ValueError:
|
173 |
-
valid = False
|
174 |
-
break
|
175 |
-
if not (platform in ["playground", "imagenhub"] and task == "edition"):
|
176 |
-
valid = False
|
177 |
-
break
|
178 |
-
if not valid:
|
179 |
-
ct_invalid += 1
|
180 |
-
continue
|
181 |
-
for i, _model in enumerate(models):
|
182 |
-
platform, model_name, task = _model.split("_")
|
183 |
-
models[i] = model_name
|
184 |
-
|
185 |
-
elif task_name == "t2i_generation":
|
186 |
-
valid = True
|
187 |
-
for _model in models:
|
188 |
-
try:
|
189 |
-
platform, model_name, task = _model.split("_")
|
190 |
-
except ValueError:
|
191 |
-
valid = False
|
192 |
-
break
|
193 |
-
if not (platform.lower() in ["playground", "imagenhub", 'fal'] and (task == "generation" or task == "text2image")):
|
194 |
-
valid = False
|
195 |
-
break
|
196 |
-
if not valid:
|
197 |
-
ct_invalid += 1
|
198 |
-
continue
|
199 |
-
for i, _model in enumerate(models):
|
200 |
-
platform, model_name, task = _model.split("_")
|
201 |
-
models[i] = model_name
|
202 |
-
|
203 |
-
elif task_name == "video_generation":
|
204 |
-
valid = True
|
205 |
-
for _model in models:
|
206 |
-
try:
|
207 |
-
platform, model_name, task = _model.split("_")
|
208 |
-
except ValueError:
|
209 |
-
valid = False
|
210 |
-
break
|
211 |
-
if not (platform in ["videogenhub", "fal"] and task == "generation" or task == "text2video"):
|
212 |
-
valid = False
|
213 |
-
break
|
214 |
-
if not valid:
|
215 |
-
ct_invalid += 1
|
216 |
-
continue
|
217 |
-
for i, _model in enumerate(models):
|
218 |
-
platform, model_name, task = _model.split("_")
|
219 |
-
models[i] = model_name
|
220 |
-
|
221 |
-
else:
|
222 |
-
raise ValueError(f"Invalid task_name: {task_name}")
|
223 |
-
|
224 |
-
models = [replace_model_name(m, row["tstamp"]) for m in models]
|
225 |
-
|
226 |
-
# Exclude certain models
|
227 |
-
if exclude_model_names and any(x in exclude_model_names for x in models):
|
228 |
-
ct_invalid += 1
|
229 |
-
continue
|
230 |
-
|
231 |
-
if mode == "conv_release":
|
232 |
-
# assert the two images are the same
|
233 |
-
date = datetime.datetime.fromtimestamp(row["tstamp"], tz=timezone("US/Pacific")).strftime("%Y-%m-%d") # 2024-02-29
|
234 |
-
image_path_format = f"{LOG_ROOT_DIR}/{date}-convinput_images/input_image_"
|
235 |
-
image_path_0 = image_path_format + str(row["states"][0]["conv_id"]) + ".png"
|
236 |
-
image_path_1 = image_path_format + str(row["states"][1]["conv_id"]) + ".png"
|
237 |
-
if not os.path.exists(image_path_0) or not os.path.exists(image_path_1):
|
238 |
-
print(f"Image not found for {image_path_0} or {image_path_1}")
|
239 |
-
ct_invalid += 1
|
240 |
-
continue
|
241 |
-
|
242 |
-
image_0 = load_image(image_path_0)
|
243 |
-
image_1 = load_image(image_path_1)
|
244 |
-
if image_0 is None or image_1 is None:
|
245 |
-
print(f"Image not found for {image_path_0} or {image_path_1}")
|
246 |
-
ct_invalid += 1
|
247 |
-
continue
|
248 |
-
if image_0.tobytes() != image_1.tobytes():
|
249 |
-
print(f"Image not the same for {image_path_0} and {image_path_1}")
|
250 |
-
ct_invalid += 1
|
251 |
-
continue
|
252 |
-
|
253 |
-
|
254 |
-
ip = row["ip"]
|
255 |
-
if ip not in all_ips:
|
256 |
-
all_ips[ip] = {"ip": ip, "count": 0, "sanitized_id": len(all_ips)}
|
257 |
-
all_ips[ip]["count"] += 1
|
258 |
-
if sanitize_ip:
|
259 |
-
user_id = f"arena_user_{all_ips[ip]['sanitized_id']}"
|
260 |
-
else:
|
261 |
-
user_id = f"{all_ips[ip]['ip']}"
|
262 |
-
|
263 |
-
if ban_ip_list is not None and ip in ban_ip_list:
|
264 |
-
ct_banned += 1
|
265 |
-
print(f"User {user_id} is banned")
|
266 |
-
continue
|
267 |
-
required_keys_each_task = {
|
268 |
-
"image_editing": ["source_prompt", "target_prompt", "instruct_prompt"],
|
269 |
-
"t2i_generation": ["prompt"],
|
270 |
-
"video_generation": ["prompt"]
|
271 |
-
}
|
272 |
-
|
273 |
-
model_a_inputs = row["states"][0].copy()
|
274 |
-
# pop conv_id and model_name
|
275 |
-
model_a_inputs.pop("conv_id")
|
276 |
-
model_a_inputs.pop("model_name")
|
277 |
-
model_b_inputs = row["states"][1].copy()
|
278 |
-
model_b_inputs.pop("conv_id")
|
279 |
-
model_b_inputs.pop("model_name")
|
280 |
-
for key in model_a_inputs:
|
281 |
-
if not (key in model_b_inputs and model_a_inputs[key] == model_b_inputs[key]):
|
282 |
-
print(f"Inconsistent inputs: {model_a_inputs} vs {model_b_inputs}")
|
283 |
-
ct_invalid += 1
|
284 |
-
continue
|
285 |
-
if mode == "conv_release":
|
286 |
-
if any(key not in model_a_inputs for key in required_keys_each_task[task_name]):
|
287 |
-
print(f"Missing required keys: {model_a_inputs}, {required_keys_each_task[task_name]}")
|
288 |
-
ct_invalid += 1
|
289 |
-
continue
|
290 |
-
|
291 |
-
inputs = model_a_inputs
|
292 |
-
# Save the results
|
293 |
-
battles.append(
|
294 |
-
dict(
|
295 |
-
model_a_conv_id=row["states"][0]["conv_id"],
|
296 |
-
model_b_conv_id=row["states"][1]["conv_id"],
|
297 |
-
inputs=inputs,
|
298 |
-
model_a=models[0],
|
299 |
-
model_b=models[1],
|
300 |
-
vote_type=row["type"],
|
301 |
-
winner=convert_type[row["type"]],
|
302 |
-
judge=f"arena_user_{user_id}",
|
303 |
-
anony=anony,
|
304 |
-
tstamp=row["tstamp"],
|
305 |
-
)
|
306 |
-
)
|
307 |
-
|
308 |
-
all_models.update(models_hidden)
|
309 |
-
battles.sort(key=lambda x: x["tstamp"])
|
310 |
-
last_updated_tstamp = battles[-1]["tstamp"]
|
311 |
-
|
312 |
-
last_updated_datetime = datetime.datetime.fromtimestamp(
|
313 |
-
last_updated_tstamp, tz=timezone("US/Pacific")
|
314 |
-
).strftime("%Y-%m-%d %H:%M:%S %Z")
|
315 |
-
|
316 |
-
print(
|
317 |
-
f"#votes: {len(data)}, #invalid votes: {ct_invalid}, "
|
318 |
-
f"#leaked_identity: {ct_leaked_identity} "
|
319 |
-
f"#banned: {ct_banned} "
|
320 |
-
)
|
321 |
-
print(f"#battles: {len(battles)}, #anony: {ct_anony}")
|
322 |
-
print(f"#models: {len(all_models)}, {all_models}")
|
323 |
-
print(f"last-updated: {last_updated_datetime}")
|
324 |
-
|
325 |
-
if ban_ip_list is not None:
|
326 |
-
for ban_ip in ban_ip_list:
|
327 |
-
if ban_ip in all_ips:
|
328 |
-
del all_ips[ban_ip]
|
329 |
-
print("Top 30 IPs:")
|
330 |
-
print(sorted(all_ips.values(), key=lambda x: x["count"], reverse=True)[:30])
|
331 |
-
return battles
|
332 |
-
|
333 |
-
|
334 |
-
if __name__ == "__main__":
|
335 |
-
parser = argparse.ArgumentParser()
|
336 |
-
parser.add_argument("--max-num-files", type=int)
|
337 |
-
parser.add_argument(
|
338 |
-
"--mode", type=str, choices=["simple", "conv_release"], default="simple"
|
339 |
-
)
|
340 |
-
parser.add_argument("--task_name", type=str, default="image_editing", choices=["image_editing", "t2i_generation", "video_generation"])
|
341 |
-
parser.add_argument("--exclude-model-names", type=str, nargs="+")
|
342 |
-
parser.add_argument("--ban-ip-file", type=str)
|
343 |
-
parser.add_argument("--sanitize-ip", action="store_true", default=False)
|
344 |
-
args = parser.parse_args()
|
345 |
-
|
346 |
-
log_files = get_log_files(args.max_num_files)
|
347 |
-
ban_ip_list = json.load(open(args.ban_ip_file)) if args.ban_ip_file else None
|
348 |
-
|
349 |
-
battles = clean_battle_data(
|
350 |
-
log_files, args.exclude_model_names or [], ban_ip_list, args.sanitize_ip, args.mode, args.task_name
|
351 |
-
)
|
352 |
-
last_updated_tstamp = battles[-1]["tstamp"]
|
353 |
-
cutoff_date = datetime.datetime.fromtimestamp(
|
354 |
-
last_updated_tstamp, tz=timezone("US/Pacific")
|
355 |
-
).strftime("%Y%m%d")
|
356 |
-
|
357 |
-
if args.mode == "simple":
|
358 |
-
# for x in battles:
|
359 |
-
# for key in [
|
360 |
-
# "conversation_a",
|
361 |
-
# "conversation_b",
|
362 |
-
# "question_id",
|
363 |
-
# ]:
|
364 |
-
# if key in x:
|
365 |
-
# del x[key]
|
366 |
-
print("Samples:")
|
367 |
-
for i in range(min(4, len(battles))):
|
368 |
-
print(battles[i])
|
369 |
-
output = f"clean_battle_{args.task_name}_{cutoff_date}.json"
|
370 |
-
elif args.mode == "conv_release":
|
371 |
-
output = f"clean_battle_{args.task_name}_conv_{cutoff_date}.json"
|
372 |
-
|
373 |
-
with open(output, "w") as fout:
|
374 |
-
json.dump(battles, fout, indent=2, ensure_ascii=False)
|
375 |
-
print(f"Write cleaned data to {output}")
|
376 |
-
|
377 |
-
with open("cut_off_date.txt", "w") as fout:
|
378 |
-
fout.write(cutoff_date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/elo_rating/elo_analysis.py
DELETED
@@ -1,413 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
from collections import defaultdict
|
3 |
-
import datetime
|
4 |
-
import json
|
5 |
-
import math
|
6 |
-
import pickle
|
7 |
-
from pytz import timezone
|
8 |
-
|
9 |
-
import numpy as np
|
10 |
-
import pandas as pd
|
11 |
-
import plotly.express as px
|
12 |
-
from tqdm import tqdm
|
13 |
-
|
14 |
-
from .basic_stats import get_log_files
|
15 |
-
from .clean_battle_data import clean_battle_data
|
16 |
-
from .utils import get_model_info
|
17 |
-
|
18 |
-
pd.options.display.float_format = "{:.2f}".format
|
19 |
-
|
20 |
-
|
21 |
-
def compute_elo(battles, K=4, SCALE=400, BASE=10, INIT_RATING=1000):
|
22 |
-
rating = defaultdict(lambda: INIT_RATING)
|
23 |
-
|
24 |
-
for rd, model_a, model_b, winner in battles[
|
25 |
-
["model_a", "model_b", "winner"]
|
26 |
-
].itertuples():
|
27 |
-
ra = rating[model_a]
|
28 |
-
rb = rating[model_b]
|
29 |
-
ea = 1 / (1 + BASE ** ((rb - ra) / SCALE))
|
30 |
-
eb = 1 / (1 + BASE ** ((ra - rb) / SCALE))
|
31 |
-
if winner == "model_a":
|
32 |
-
sa = 1
|
33 |
-
elif winner == "model_b":
|
34 |
-
sa = 0
|
35 |
-
elif winner == "tie" or winner == "tie (bothbad)":
|
36 |
-
sa = 0.5
|
37 |
-
else:
|
38 |
-
raise Exception(f"unexpected vote {winner}")
|
39 |
-
rating[model_a] += K * (sa - ea)
|
40 |
-
rating[model_b] += K * (1 - sa - eb)
|
41 |
-
|
42 |
-
return dict(rating)
|
43 |
-
|
44 |
-
|
45 |
-
def get_bootstrap_result(battles, func_compute_elo, num_round=1000):
|
46 |
-
rows = []
|
47 |
-
for i in tqdm(range(num_round), desc="bootstrap"):
|
48 |
-
tmp_battles = battles.sample(frac=1.0, replace=True)
|
49 |
-
rows.append(func_compute_elo(tmp_battles))
|
50 |
-
df = pd.DataFrame(rows)
|
51 |
-
return df[df.median().sort_values(ascending=False).index]
|
52 |
-
|
53 |
-
|
54 |
-
def compute_elo_mle_with_tie(df, SCALE=400, BASE=10, INIT_RATING=1000):
|
55 |
-
from sklearn.linear_model import LogisticRegression
|
56 |
-
|
57 |
-
models = pd.concat([df["model_a"], df["model_b"]]).unique()
|
58 |
-
models = pd.Series(np.arange(len(models)), index=models)
|
59 |
-
|
60 |
-
# duplicate battles
|
61 |
-
df = pd.concat([df, df], ignore_index=True)
|
62 |
-
p = len(models.index)
|
63 |
-
n = df.shape[0]
|
64 |
-
|
65 |
-
X = np.zeros([n, p])
|
66 |
-
X[np.arange(n), models[df["model_a"]]] = +math.log(BASE)
|
67 |
-
X[np.arange(n), models[df["model_b"]]] = -math.log(BASE)
|
68 |
-
|
69 |
-
# one A win => two A win
|
70 |
-
Y = np.zeros(n)
|
71 |
-
Y[df["winner"] == "model_a"] = 1.0
|
72 |
-
|
73 |
-
# one tie => one A win + one B win
|
74 |
-
# find tie + tie (both bad) index
|
75 |
-
tie_idx = (df["winner"] == "tie") | (df["winner"] == "tie (bothbad)")
|
76 |
-
tie_idx[len(tie_idx) // 2 :] = False
|
77 |
-
Y[tie_idx] = 1.0
|
78 |
-
|
79 |
-
lr = LogisticRegression(fit_intercept=False)
|
80 |
-
lr.fit(X, Y)
|
81 |
-
|
82 |
-
elo_scores = SCALE * lr.coef_[0] + INIT_RATING
|
83 |
-
# calibrate llama-13b to 800 if applicable
|
84 |
-
if "llama-13b" in models.index:
|
85 |
-
elo_scores += 800 - elo_scores[models["llama-13b"]]
|
86 |
-
return pd.Series(elo_scores, index=models.index).sort_values(ascending=False)
|
87 |
-
|
88 |
-
|
89 |
-
def get_median_elo_from_bootstrap(bootstrap_df):
|
90 |
-
median = dict(bootstrap_df.quantile(0.5))
|
91 |
-
median = {k: int(v + 0.5) for k, v in median.items()}
|
92 |
-
return median
|
93 |
-
|
94 |
-
|
95 |
-
def compute_pairwise_win_fraction(battles, model_order, limit_show_number=None):
|
96 |
-
# Times each model wins as Model A
|
97 |
-
a_win_ptbl = pd.pivot_table(
|
98 |
-
battles[battles["winner"] == "model_a"],
|
99 |
-
index="model_a",
|
100 |
-
columns="model_b",
|
101 |
-
aggfunc="size",
|
102 |
-
fill_value=0,
|
103 |
-
)
|
104 |
-
|
105 |
-
# Table counting times each model wins as Model B
|
106 |
-
b_win_ptbl = pd.pivot_table(
|
107 |
-
battles[battles["winner"] == "model_b"],
|
108 |
-
index="model_a",
|
109 |
-
columns="model_b",
|
110 |
-
aggfunc="size",
|
111 |
-
fill_value=0,
|
112 |
-
)
|
113 |
-
|
114 |
-
# Table counting number of A-B pairs
|
115 |
-
num_battles_ptbl = pd.pivot_table(
|
116 |
-
battles, index="model_a", columns="model_b", aggfunc="size", fill_value=0
|
117 |
-
)
|
118 |
-
|
119 |
-
# Computing the proportion of wins for each model as A and as B
|
120 |
-
# against all other models
|
121 |
-
row_beats_col_freq = (a_win_ptbl + b_win_ptbl.T) / (
|
122 |
-
num_battles_ptbl + num_battles_ptbl.T
|
123 |
-
)
|
124 |
-
|
125 |
-
if model_order is None:
|
126 |
-
prop_wins = row_beats_col_freq.mean(axis=1).sort_values(ascending=False)
|
127 |
-
model_order = list(prop_wins.keys())
|
128 |
-
|
129 |
-
if limit_show_number is not None:
|
130 |
-
model_order = model_order[:limit_show_number]
|
131 |
-
|
132 |
-
# Arrange ordering according to proprition of wins
|
133 |
-
row_beats_col = row_beats_col_freq.loc[model_order, model_order]
|
134 |
-
return row_beats_col
|
135 |
-
|
136 |
-
|
137 |
-
def visualize_leaderboard_table(rating):
|
138 |
-
models = list(rating.keys())
|
139 |
-
models.sort(key=lambda k: -rating[k])
|
140 |
-
|
141 |
-
emoji_dict = {
|
142 |
-
1: "🥇",
|
143 |
-
2: "🥈",
|
144 |
-
3: "🥉",
|
145 |
-
}
|
146 |
-
|
147 |
-
md = ""
|
148 |
-
md += "| Rank | Model | Elo Rating | Description |\n"
|
149 |
-
md += "| --- | --- | --- | --- |\n"
|
150 |
-
for i, model in enumerate(models):
|
151 |
-
rank = i + 1
|
152 |
-
minfo = get_model_info(model)
|
153 |
-
emoji = emoji_dict.get(rank, "")
|
154 |
-
md += f"| {rank} | {emoji} [{model}]({minfo.link}) | {rating[model]:.0f} | {minfo.description} |\n"
|
155 |
-
|
156 |
-
return md
|
157 |
-
|
158 |
-
|
159 |
-
def visualize_pairwise_win_fraction(battles, model_order):
|
160 |
-
row_beats_col = compute_pairwise_win_fraction(battles, model_order)
|
161 |
-
fig = px.imshow(
|
162 |
-
row_beats_col,
|
163 |
-
color_continuous_scale="RdBu",
|
164 |
-
text_auto=".2f",
|
165 |
-
height=700,
|
166 |
-
width=700,
|
167 |
-
)
|
168 |
-
fig.update_layout(
|
169 |
-
xaxis_title="Model B",
|
170 |
-
yaxis_title="Model A",
|
171 |
-
xaxis_side="top",
|
172 |
-
title_y=0.07,
|
173 |
-
title_x=0.5,
|
174 |
-
)
|
175 |
-
fig.update_traces(
|
176 |
-
hovertemplate="Model A: %{y}<br>Model B: %{x}<br>Fraction of A Wins: %{z}<extra></extra>"
|
177 |
-
)
|
178 |
-
|
179 |
-
return fig
|
180 |
-
|
181 |
-
|
182 |
-
def visualize_battle_count(battles, model_order):
|
183 |
-
ptbl = pd.pivot_table(
|
184 |
-
battles, index="model_a", columns="model_b", aggfunc="size", fill_value=0
|
185 |
-
)
|
186 |
-
battle_counts = ptbl + ptbl.T
|
187 |
-
fig = px.imshow(
|
188 |
-
battle_counts.loc[model_order, model_order],
|
189 |
-
text_auto=True,
|
190 |
-
height=700,
|
191 |
-
width=700,
|
192 |
-
)
|
193 |
-
fig.update_layout(
|
194 |
-
xaxis_title="Model B",
|
195 |
-
yaxis_title="Model A",
|
196 |
-
xaxis_side="top",
|
197 |
-
title_y=0.07,
|
198 |
-
title_x=0.5,
|
199 |
-
)
|
200 |
-
fig.update_traces(
|
201 |
-
hovertemplate="Model A: %{y}<br>Model B: %{x}<br>Count: %{z}<extra></extra>"
|
202 |
-
)
|
203 |
-
return fig
|
204 |
-
|
205 |
-
|
206 |
-
def visualize_average_win_rate(battles, limit_show_number):
|
207 |
-
row_beats_col_freq = compute_pairwise_win_fraction(
|
208 |
-
battles, None, limit_show_number=limit_show_number
|
209 |
-
)
|
210 |
-
fig = px.bar(
|
211 |
-
row_beats_col_freq.mean(axis=1).sort_values(ascending=False),
|
212 |
-
text_auto=".2f",
|
213 |
-
height=500,
|
214 |
-
width=700,
|
215 |
-
)
|
216 |
-
fig.update_layout(
|
217 |
-
yaxis_title="Average Win Rate", xaxis_title="Model", showlegend=False,
|
218 |
-
)
|
219 |
-
fig.update_traces(textfont_size=16)
|
220 |
-
return fig
|
221 |
-
|
222 |
-
|
223 |
-
def visualize_bootstrap_elo_rating(df, df_final, limit_show_number):
|
224 |
-
bars = (
|
225 |
-
pd.DataFrame(
|
226 |
-
dict(
|
227 |
-
lower=df.quantile(0.025),
|
228 |
-
rating=df_final,
|
229 |
-
upper=df.quantile(0.975),
|
230 |
-
)
|
231 |
-
)
|
232 |
-
.reset_index(names="model")
|
233 |
-
.sort_values("rating", ascending=False)
|
234 |
-
)
|
235 |
-
bars = bars[:limit_show_number]
|
236 |
-
bars["error_y"] = bars["upper"] - bars["rating"]
|
237 |
-
bars["error_y_minus"] = bars["rating"] - bars["lower"]
|
238 |
-
bars["rating_rounded"] = np.round(bars["rating"], 2)
|
239 |
-
fig = px.scatter(
|
240 |
-
bars,
|
241 |
-
x="model",
|
242 |
-
y="rating",
|
243 |
-
error_y="error_y",
|
244 |
-
error_y_minus="error_y_minus",
|
245 |
-
text="rating_rounded",
|
246 |
-
height=500,
|
247 |
-
width=700,
|
248 |
-
)
|
249 |
-
fig.update_layout(xaxis_title="Model", yaxis_title="Rating")
|
250 |
-
fig.update_traces(textfont_size=16)
|
251 |
-
return fig
|
252 |
-
|
253 |
-
|
254 |
-
def report_elo_analysis_results(battles_json, rating_system="bt", num_bootstrap=100, anony_only=True):
|
255 |
-
battles = pd.DataFrame(battles_json)
|
256 |
-
battles = battles.sort_values(ascending=True, by=["tstamp"])
|
257 |
-
# Only use anonymous votes
|
258 |
-
if anony_only:
|
259 |
-
battles = battles[battles["anony"]].reset_index(drop=True)
|
260 |
-
battles_no_ties = battles[~battles["winner"].str.contains("tie")]
|
261 |
-
|
262 |
-
# Online update
|
263 |
-
elo_rating_online = compute_elo(battles)
|
264 |
-
|
265 |
-
if rating_system == "bt":
|
266 |
-
bootstrap_df = get_bootstrap_result(
|
267 |
-
battles, compute_elo_mle_with_tie, num_round=num_bootstrap
|
268 |
-
)
|
269 |
-
elo_rating_final = compute_elo_mle_with_tie(battles)
|
270 |
-
elif rating_system == "elo":
|
271 |
-
bootstrap_df = get_bootstrap_result(
|
272 |
-
battles, compute_elo, num_round=num_bootstrap
|
273 |
-
)
|
274 |
-
elo_rating_median = get_median_elo_from_bootstrap(bootstrap_df)
|
275 |
-
elo_rating_final = elo_rating_median
|
276 |
-
|
277 |
-
model_order = list(elo_rating_final.keys())
|
278 |
-
model_order.sort(key=lambda k: -elo_rating_final[k])
|
279 |
-
|
280 |
-
limit_show_number = 25 # limit show number to make plots smaller
|
281 |
-
model_order = model_order[:limit_show_number]
|
282 |
-
|
283 |
-
# leaderboard_table_df: elo rating, variance, 95% interval, number of battles
|
284 |
-
leaderboard_table_df = pd.DataFrame(
|
285 |
-
{
|
286 |
-
"rating": elo_rating_final,
|
287 |
-
"variance": bootstrap_df.var(),
|
288 |
-
"rating_q975": bootstrap_df.quantile(0.975),
|
289 |
-
"rating_q025": bootstrap_df.quantile(0.025),
|
290 |
-
"num_battles": battles["model_a"].value_counts()
|
291 |
-
+ battles["model_b"].value_counts(),
|
292 |
-
}
|
293 |
-
)
|
294 |
-
|
295 |
-
# Plots
|
296 |
-
leaderboard_table = visualize_leaderboard_table(elo_rating_final)
|
297 |
-
win_fraction_heatmap = visualize_pairwise_win_fraction(battles_no_ties, model_order)
|
298 |
-
battle_count_heatmap = visualize_battle_count(battles_no_ties, model_order)
|
299 |
-
average_win_rate_bar = visualize_average_win_rate(
|
300 |
-
battles_no_ties, limit_show_number
|
301 |
-
)
|
302 |
-
bootstrap_elo_rating = visualize_bootstrap_elo_rating(
|
303 |
-
bootstrap_df, elo_rating_final, limit_show_number
|
304 |
-
)
|
305 |
-
|
306 |
-
last_updated_tstamp = battles["tstamp"].max()
|
307 |
-
last_updated_datetime = datetime.datetime.fromtimestamp(
|
308 |
-
last_updated_tstamp, tz=timezone("US/Pacific")
|
309 |
-
).strftime("%Y-%m-%d %H:%M:%S %Z")
|
310 |
-
|
311 |
-
return {
|
312 |
-
"rating_system": rating_system,
|
313 |
-
"elo_rating_online": elo_rating_online,
|
314 |
-
"elo_rating_final": elo_rating_final,
|
315 |
-
"leaderboard_table": leaderboard_table,
|
316 |
-
"win_fraction_heatmap": win_fraction_heatmap,
|
317 |
-
"battle_count_heatmap": battle_count_heatmap,
|
318 |
-
"average_win_rate_bar": average_win_rate_bar,
|
319 |
-
"bootstrap_elo_rating": bootstrap_elo_rating,
|
320 |
-
"last_updated_datetime": last_updated_datetime,
|
321 |
-
"last_updated_tstamp": last_updated_tstamp,
|
322 |
-
"bootstrap_df": bootstrap_df,
|
323 |
-
"leaderboard_table_df": leaderboard_table_df,
|
324 |
-
}
|
325 |
-
|
326 |
-
|
327 |
-
def pretty_print_elo_rating(rating):
|
328 |
-
model_order = list(rating.keys())
|
329 |
-
model_order.sort(key=lambda k: -rating[k])
|
330 |
-
for i, model in enumerate(model_order):
|
331 |
-
print(f"{i+1:2d}, {model:25s}, {rating[model]:.0f}")
|
332 |
-
|
333 |
-
|
334 |
-
if __name__ == "__main__":
|
335 |
-
parser = argparse.ArgumentParser()
|
336 |
-
parser.add_argument("--clean-battle-file", type=str)
|
337 |
-
parser.add_argument("--max-num-files", type=int)
|
338 |
-
parser.add_argument("--num-bootstrap", type=int, default=100)
|
339 |
-
parser.add_argument(
|
340 |
-
"--rating-system", type=str, choices=["bt", "elo"], default="bt"
|
341 |
-
)
|
342 |
-
parser.add_argument("--exclude-tie", action="store_true", default=False)
|
343 |
-
parser.add_argument("--min_num_battles_per_model", type=int, default=25)
|
344 |
-
args = parser.parse_args()
|
345 |
-
|
346 |
-
np.random.seed(42)
|
347 |
-
|
348 |
-
if args.clean_battle_file:
|
349 |
-
# Read data from a cleaned battle files
|
350 |
-
battles = pd.read_json(args.clean_battle_file)
|
351 |
-
else:
|
352 |
-
# Read data from all log files
|
353 |
-
log_files = get_log_files(args.max_num_files)
|
354 |
-
battles = clean_battle_data(log_files)
|
355 |
-
|
356 |
-
if args.min_num_battles_per_model:
|
357 |
-
num_battles_per_model = defaultdict(int)
|
358 |
-
# use pd
|
359 |
-
for _, battle in battles.iterrows():
|
360 |
-
num_battles_per_model[battle["model_a"]] += 1
|
361 |
-
num_battles_per_model[battle["model_b"]] += 1
|
362 |
-
to_remove_models = [
|
363 |
-
model for model, num_battles in num_battles_per_model.items() if num_battles < args.min_num_battles_per_model
|
364 |
-
]
|
365 |
-
battles_with_enough_battles = battles[
|
366 |
-
~battles["model_a"].isin(to_remove_models) & ~battles["model_b"].isin(to_remove_models)
|
367 |
-
]
|
368 |
-
print(f"Remove models with less than {args.min_num_battles_per_model} battles: {to_remove_models}")
|
369 |
-
print(f"Number of battles: {len(battles)} -> {len(battles_with_enough_battles)}")
|
370 |
-
battles = battles_with_enough_battles
|
371 |
-
|
372 |
-
anony_results = report_elo_analysis_results(
|
373 |
-
battles, rating_system=args.rating_system, num_bootstrap=args.num_bootstrap, anony_only=True
|
374 |
-
)
|
375 |
-
full_results = report_elo_analysis_results(
|
376 |
-
battles, rating_system=args.rating_system, num_bootstrap=args.num_bootstrap, anony_only=False
|
377 |
-
)
|
378 |
-
|
379 |
-
|
380 |
-
print("# Online Elo")
|
381 |
-
pretty_print_elo_rating(anony_results["elo_rating_online"])
|
382 |
-
print("# Median")
|
383 |
-
pretty_print_elo_rating(anony_results["elo_rating_final"])
|
384 |
-
print(f"Annoy last update : {anony_results['last_updated_datetime']}")
|
385 |
-
print(f"Full last update : {full_results['last_updated_datetime']}")
|
386 |
-
|
387 |
-
|
388 |
-
# # save heatmap results in the same directory of the cleaned battle file
|
389 |
-
win_fraction_heatmap_file = args.clean_battle_file.replace(".json", "_win_fraction_heatmap.jpg")
|
390 |
-
battle_count_heatmap_file = args.clean_battle_file.replace(".json", "_battle_count_heatmap.jpg")
|
391 |
-
average_win_rate_bar_file = args.clean_battle_file.replace(".json", "_average_win_rate_bar.jpg")
|
392 |
-
bootstrap_elo_rating_file = args.clean_battle_file.replace(".json", "_bootstrap_elo_rating.jpg")
|
393 |
-
anony_results["win_fraction_heatmap"].write_image(win_fraction_heatmap_file)
|
394 |
-
anony_results["battle_count_heatmap"].write_image(battle_count_heatmap_file)
|
395 |
-
anony_results["average_win_rate_bar"].write_image(average_win_rate_bar_file)
|
396 |
-
anony_results["bootstrap_elo_rating"].write_image(bootstrap_elo_rating_file)
|
397 |
-
|
398 |
-
|
399 |
-
last_updated_tstamp = full_results["last_updated_tstamp"]
|
400 |
-
cutoff_date = datetime.datetime.fromtimestamp(
|
401 |
-
last_updated_tstamp, tz=timezone("US/Pacific")
|
402 |
-
).strftime("%Y%m%d")
|
403 |
-
|
404 |
-
|
405 |
-
results = {
|
406 |
-
"anony": anony_results,
|
407 |
-
"full": full_results,
|
408 |
-
}
|
409 |
-
with open(f"elo_results_{cutoff_date}.pkl", "wb") as fout:
|
410 |
-
pickle.dump(results, fout)
|
411 |
-
|
412 |
-
with open("cut_off_date.txt", "w") as fout:
|
413 |
-
fout.write(cutoff_date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/elo_rating/generate_leaderboard.py
DELETED
@@ -1,68 +0,0 @@
|
|
1 |
-
import fire
|
2 |
-
import json
|
3 |
-
import pandas as pd
|
4 |
-
import pickle
|
5 |
-
from .utils import get_model_info
|
6 |
-
|
7 |
-
def main(
|
8 |
-
elo_rating_pkl: str,
|
9 |
-
output_csv: str
|
10 |
-
):
|
11 |
-
with open(elo_rating_pkl, "rb") as fin:
|
12 |
-
elo_rating_results = pickle.load(fin)
|
13 |
-
|
14 |
-
anony_elo_rating_results = elo_rating_results["anony"]
|
15 |
-
full_elo_rating_results = elo_rating_results["full"]
|
16 |
-
anony_leaderboard_data = anony_elo_rating_results["leaderboard_table_df"]
|
17 |
-
full_leaderboard_data = full_elo_rating_results["leaderboard_table_df"]
|
18 |
-
|
19 |
-
print(anony_leaderboard_data)
|
20 |
-
# Model,MT-bench (score),Arena Elo rating,MMLU,License,Link
|
21 |
-
fields = ["key", "Model", "Arena Elo rating (anony)", "Arena Elo rating (full)", "License", "Organization", "Link"]
|
22 |
-
# set Organization and license to empty for now
|
23 |
-
all_models = anony_leaderboard_data.index.tolist()
|
24 |
-
|
25 |
-
model_info = {}
|
26 |
-
for model in all_models:
|
27 |
-
|
28 |
-
registered_model_info = get_model_info(model)
|
29 |
-
model_info[model] = {
|
30 |
-
"key": model,
|
31 |
-
"Model": model,
|
32 |
-
"License": registered_model_info.license,
|
33 |
-
"Organization": registered_model_info.organization,
|
34 |
-
"Link": registered_model_info.link
|
35 |
-
}
|
36 |
-
|
37 |
-
if model in anony_leaderboard_data.index:
|
38 |
-
model_info[model]["Arena Elo rating (anony)"] = anony_leaderboard_data.loc[model, "rating"]
|
39 |
-
else:
|
40 |
-
model_info[model]["Arena Elo rating (anony)"] = 0
|
41 |
-
|
42 |
-
if model in full_elo_rating_results["leaderboard_table_df"].index:
|
43 |
-
model_info[model]["Arena Elo rating (full)"] = full_leaderboard_data.loc[model, "rating"]
|
44 |
-
else:
|
45 |
-
model_info[model]["Arena Elo rating (full)"] = 0
|
46 |
-
|
47 |
-
final_model_info = {}
|
48 |
-
for model in model_info:
|
49 |
-
if "Model" in model_info[model]:
|
50 |
-
final_model_info[model] = model_info[model]
|
51 |
-
model_info = final_model_info
|
52 |
-
|
53 |
-
exclude_keys = ['starting_from']
|
54 |
-
for key in exclude_keys:
|
55 |
-
for model in model_info:
|
56 |
-
if key in model_info[model]:
|
57 |
-
del model_info[model][key]
|
58 |
-
df = pd.DataFrame(model_info).T
|
59 |
-
df = df[fields]
|
60 |
-
# sort by anony rating
|
61 |
-
df = df.sort_values(by=["Arena Elo rating (anony)"], ascending=False)
|
62 |
-
df.to_csv(output_csv, index=False)
|
63 |
-
print("Leaderboard data saved to", output_csv)
|
64 |
-
print(df)
|
65 |
-
|
66 |
-
|
67 |
-
if __name__ == "__main__":
|
68 |
-
fire.Fire(main)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/elo_rating/inspect_conv_rating.py
DELETED
@@ -1,234 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import code
|
3 |
-
import datetime
|
4 |
-
import json
|
5 |
-
import os
|
6 |
-
from pytz import timezone
|
7 |
-
import time
|
8 |
-
|
9 |
-
import pandas as pd
|
10 |
-
from tqdm import tqdm
|
11 |
-
import csv
|
12 |
-
|
13 |
-
import base64
|
14 |
-
from icecream import ic
|
15 |
-
from openai import OpenAI
|
16 |
-
|
17 |
-
# Function to encode the image
|
18 |
-
def encode_image(image_path):
|
19 |
-
with open(image_path, "rb") as image_file:
|
20 |
-
return base64.b64encode(image_file.read()).decode('utf-8')
|
21 |
-
|
22 |
-
def get_log_files(max_num_files=None):
|
23 |
-
dates = []
|
24 |
-
for month in [2, 3]:
|
25 |
-
for day in range(1, 32):
|
26 |
-
dates.append(f"2024-{month:02d}-{day:02d}")
|
27 |
-
|
28 |
-
num_servers = 1
|
29 |
-
filenames = []
|
30 |
-
for d in dates:
|
31 |
-
for i in range(num_servers):
|
32 |
-
# name = os.path.expanduser(f"~/fastchat_logs/server{i}/{d}-conv.json")
|
33 |
-
name = os.path.expanduser(f"vision-arena-logs/{d}-conv.json")
|
34 |
-
if os.path.exists(name):
|
35 |
-
filenames.append(name)
|
36 |
-
max_num_files = max_num_files or len(filenames)
|
37 |
-
filenames = filenames[-max_num_files:]
|
38 |
-
return filenames
|
39 |
-
|
40 |
-
|
41 |
-
def pretty_print_conversation(messages):
|
42 |
-
for role, msg in messages:
|
43 |
-
print(f"[[{role}]]: {msg}")
|
44 |
-
|
45 |
-
|
46 |
-
def get_gpt4v_response(client, img_bs64=None, text_prompt="", use_vision=False):
|
47 |
-
if use_vision:
|
48 |
-
response = client.chat.completions.create(
|
49 |
-
model="gpt-4-vision-preview",
|
50 |
-
messages=[
|
51 |
-
{
|
52 |
-
"role": "user",
|
53 |
-
"content": [
|
54 |
-
{"type": "text", "text": text_prompt},
|
55 |
-
{
|
56 |
-
"type": "image_url",
|
57 |
-
"image_url": {
|
58 |
-
"url": f"data:image/jpeg;base64,{img_bs64}"
|
59 |
-
}
|
60 |
-
},
|
61 |
-
],
|
62 |
-
}
|
63 |
-
],
|
64 |
-
max_tokens=100,
|
65 |
-
)
|
66 |
-
else:
|
67 |
-
response = client.chat.completions.create(
|
68 |
-
model="gpt-4-vision-preview",
|
69 |
-
messages=[
|
70 |
-
{
|
71 |
-
"role": "user",
|
72 |
-
"content": [
|
73 |
-
{"type": "text", "text": text_prompt},
|
74 |
-
],
|
75 |
-
}
|
76 |
-
],
|
77 |
-
max_tokens=100,
|
78 |
-
)
|
79 |
-
return response.choices[0].message.content
|
80 |
-
|
81 |
-
task_template_map = {
|
82 |
-
"image_caption": "Give me the semantic alignment score between the given image and the given caption: \"{generated_sentence}\" on a scale of 0-100. Only reply the score value.",
|
83 |
-
"vqa": "Rate the answer correctness regarding the question within the context of the given image on a scale of 0-100. Only reply the score value.",
|
84 |
-
"pair_rate_old": "[Instruction]\n\"{instruction}\"\n\n\"{generated_sentence}\"\n\n[System]\nGiven the instruction and the image, please compare the correctness of responses A and B. Reply with \"leftvote\" if you find A better, \"rightvote\" if B is better, \"bothbad_vote\" if both responses are wrong, and \"tievote\" if both responses are equally satisfactory. If you are unable to make a decision, please reply with \"NA\".",
|
85 |
-
"pair_rate_wexplanation": "[Instruction]\n\"{instruction}\"\n\n\"{generated_sentence}\"[System]\nPlease act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the user question displayed below. You should choose the assistant that follows the user’s instructions and answers the user’s question better. Your evaluation should consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and level of detail of their responses. Begin your evaluation by comparing the two responses and provide a short explanation. Avoid any positional biases and ensure that the order in which the responses were presented does not influence your decision. Do not allow the length of the responses to influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible. After providing your explanation, output your final verdict by strictly following this format: \"[[A]]\" if assistant A is better, \"[[B]]\" if assistant B is better, and \"[[C]]\" for a tie.",
|
86 |
-
"pair_rate": "[Instruction]\n\"{instruction}\"\n\n\"{generated_sentence}\"\n\n[System]\nPlease act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the user question displayed below. You should choose the assistant that follows the user’s instructions and answers the user’s question better. Your evaluation should consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and level of detail of their responses. Begin your evaluation by comparing the two responses and provide a short explanation. Avoid any positional biases and ensure that the order in which the responses were presented does not influence your decision. Do not allow the length of the responses to influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible. Reply with \"leftvote\" if you find assistant A better, \"rightvote\" if assistant B is better, \"bothbad_vote\" if both responses are wrong, and \"tievote\" if both assistants provide equally satisfactory answers. If you are unable to make a decision, please reply with \"NA\"."
|
87 |
-
}
|
88 |
-
|
89 |
-
def inspect_convs(log_files):
|
90 |
-
ic(log_files)
|
91 |
-
data = []
|
92 |
-
total_vote = 0
|
93 |
-
correct_vote = 0
|
94 |
-
|
95 |
-
client = OpenAI()
|
96 |
-
with open('all_pairvote_log_wgpt_prtchatbot.csv', 'w', newline='') as csvfile:
|
97 |
-
# fieldnames = ['tstamp', 'type', 'model_1', 'model_2', 'template_name_1', 'template_name_2', 'system_message_1', 'system_message_2', 'role_1', 'role_2', 'instruction_1', 'instruction_2', 'message_1', 'message_2', 'offset_1', 'offset_2', 'conv_id_1', 'conv_id_2', 'model_name_1', 'model_name_2', 'ip']
|
98 |
-
fieldnames = ['tstamp', 'type', 'models', 'states', 'ip', 'gpt_vote']
|
99 |
-
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
100 |
-
|
101 |
-
# Write the header
|
102 |
-
writer.writeheader()
|
103 |
-
|
104 |
-
for filename in tqdm(log_files, desc="read files"):
|
105 |
-
for retry in range(5):
|
106 |
-
try:
|
107 |
-
lines = open(filename).readlines()
|
108 |
-
break
|
109 |
-
except FileNotFoundError:
|
110 |
-
time.sleep(2)
|
111 |
-
|
112 |
-
for l in lines:
|
113 |
-
row = json.loads(l)
|
114 |
-
|
115 |
-
if "states" not in row:
|
116 |
-
continue
|
117 |
-
if row["type"] not in ["leftvote", "rightvote", "bothbad_vote", "tievote"]:
|
118 |
-
continue
|
119 |
-
|
120 |
-
model_names = row["states"][0]["model_name"], row["states"][1]["model_name"]
|
121 |
-
|
122 |
-
|
123 |
-
# Iterate through each state and write the relevant information
|
124 |
-
if not len(row["states"][0]['messages']): continue
|
125 |
-
# ic(row["states"][0]['messages'][1][1])
|
126 |
-
|
127 |
-
if row["states"][0]['messages'][1][1] is None or row["states"][1]['messages'][1][1] is None or "NETWORK ERROR" in row["states"][0]['messages'][1][1] or "NETWORK ERROR" in row["states"][1]['messages'][1][1]: continue
|
128 |
-
total_vote += 1
|
129 |
-
# row = {
|
130 |
-
# 'tstamp': row['tstamp'],
|
131 |
-
# 'type': row['type'],
|
132 |
-
# 'model_1': row['models'][0],
|
133 |
-
# 'model_2': row['models'][1],
|
134 |
-
# 'template_name_1': row["states"][0]['template_name'],
|
135 |
-
# 'system_message_1': row["states"][0]['system_message'],
|
136 |
-
# 'template_name_2': row["states"][1]['template_name'],
|
137 |
-
# 'system_message_2': row["states"][1]['system_message'],
|
138 |
-
# 'role_1': row["states"][0]['roles'],
|
139 |
-
# 'role_2': row["states"][1]['roles'],
|
140 |
-
# 'instruction_1': row["states"][0]['messages'][0][1],
|
141 |
-
# 'instruction_2': row["states"][1]['messages'][0][1],
|
142 |
-
# 'message_1': row["states"][0]['messages'][1][1],
|
143 |
-
# 'message_2': row["states"][1]['messages'][1][1],
|
144 |
-
# 'offset_1': row["states"][0]['offset'],
|
145 |
-
# 'offset_2': row["states"][1]['offset'],
|
146 |
-
# 'conv_id_1': row["states"][0]['conv_id'],
|
147 |
-
# 'conv_id_2': row["states"][1]['conv_id'],
|
148 |
-
# 'model_name_1': row["states"][0]['model_name'],
|
149 |
-
# 'model_name_2': row["states"][1]['model_name'],
|
150 |
-
# 'ip': row['ip']
|
151 |
-
# }
|
152 |
-
# writer.writerow(row)
|
153 |
-
# Convert complex objects to JSON strings
|
154 |
-
# TODO: check two image are the same
|
155 |
-
conv_id = row["states"][0]['conv_id']
|
156 |
-
image_path = os.path.join("/local/home/yujielu/project/Arena-Elo/vision-arena-logs", os.path.basename(filename)[:-5]+"input_images", f"input_image_{conv_id}.png")
|
157 |
-
if not os.path.exists(image_path):
|
158 |
-
response = "NA"
|
159 |
-
ic(image_path)
|
160 |
-
else:
|
161 |
-
base64_image = encode_image(image_path)
|
162 |
-
left_response = row["states"][0]['messages'][1][1]
|
163 |
-
right_response = row["states"][1]['messages'][1][1]
|
164 |
-
sep = "-" * 20
|
165 |
-
instruction = row["states"][0]['messages'][0][1]
|
166 |
-
generated_sentence = f"[The Start of Assistant A’s Answer]\n{left_response}\n[The End of Assistant A’s Answer]\n\n[The Start of Assistant B’s Answer]\n{right_response}\n[The End of Assistant B’s Answer]"
|
167 |
-
text_prompt = task_template_map["pair_rate"].format(instruction=instruction, generated_sentence=generated_sentence)
|
168 |
-
# ic(text_prompt)
|
169 |
-
try:
|
170 |
-
response = get_gpt4v_response(client, img_bs64=base64_image, text_prompt=text_prompt, use_vision=True)
|
171 |
-
except:
|
172 |
-
ic(">>> skip")
|
173 |
-
response = "NA"
|
174 |
-
|
175 |
-
# response = get_gpt4v_response(client, img_bs64=base64_image, text_prompt=text_prompt, use_vision=True)
|
176 |
-
ic(row['type'], response)
|
177 |
-
if response.strip() not in ["leftvote", "rightvote", "bothbad_vote", "tievote"]:
|
178 |
-
response = "NA"
|
179 |
-
# ic(generated_sentence)
|
180 |
-
|
181 |
-
# if row['type'] == "leftvote":
|
182 |
-
# row['type'] = "A"
|
183 |
-
# elif row['type'] == "rightvote":
|
184 |
-
# row['type'] = "B"
|
185 |
-
# elif row['type'] in ["bothbad_vote", "tievote"]:
|
186 |
-
# row['type'] = "C"
|
187 |
-
if row['type'] == response.strip():
|
188 |
-
correct_vote += 1
|
189 |
-
row['models'] = json.dumps(row['models'])
|
190 |
-
row['states'] = json.dumps(row['states'], ensure_ascii=False)
|
191 |
-
row['gpt_vote'] = response
|
192 |
-
|
193 |
-
# Write the modified row to the CSV file
|
194 |
-
writer.writerow(row)
|
195 |
-
# if row["type"] == "leftvote":
|
196 |
-
# winner, loser = model_names[0], model_names[1]
|
197 |
-
# winner_conv, loser_conv = row["states"][0], row["states"][1]
|
198 |
-
# elif row["type"] == "rightvote":
|
199 |
-
# loser, winner = model_names[0], model_names[1]
|
200 |
-
# loser_conv, winner_conv = row["states"][0], row["states"][1]
|
201 |
-
|
202 |
-
# if loser == "llava-v1.5-13b" and winner == "llava-v1.5-13b":
|
203 |
-
# print("=" * 20)
|
204 |
-
# print(f"Winner: {winner}")
|
205 |
-
# pretty_print_conversation(winner_conv["messages"])
|
206 |
-
# print(f"Loser: {loser}")
|
207 |
-
# pretty_print_conversation(loser_conv["messages"])
|
208 |
-
# print("=" * 20)
|
209 |
-
# input()
|
210 |
-
# if row['type'] == 'bothbad_vote':
|
211 |
-
# from icecream import ic
|
212 |
-
# ic(model_names)
|
213 |
-
# if row["type"] == "bothbad_vote" and "gpt-4-vision-preview" in model_names:
|
214 |
-
# print("=" * 20)
|
215 |
-
# print(f"Model A: {model_names[0]}")
|
216 |
-
# pretty_print_conversation(row["states"][0]["messages"])
|
217 |
-
# print(f"Model B: {model_names[1]}")
|
218 |
-
# pretty_print_conversation(row["states"][1]["messages"])
|
219 |
-
# print("=" * 20)
|
220 |
-
# input()
|
221 |
-
# if correct_vote >= 300: break
|
222 |
-
ic(total_vote, correct_vote)
|
223 |
-
|
224 |
-
|
225 |
-
if __name__ == "__main__":
|
226 |
-
parser = argparse.ArgumentParser()
|
227 |
-
parser.add_argument("--max-num-files", type=int)
|
228 |
-
args = parser.parse_args()
|
229 |
-
|
230 |
-
log_files = get_log_files(args.max_num_files)
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
inspect_convs(log_files)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/elo_rating/inspect_cost.py
DELETED
@@ -1,177 +0,0 @@
|
|
1 |
-
import fire
|
2 |
-
import time
|
3 |
-
import json
|
4 |
-
from collections import defaultdict
|
5 |
-
from .basic_stats import get_log_files, NUM_SERVERS, LOG_ROOT_DIR
|
6 |
-
from .utils import detect_language, get_time_stamp_from_date, get_input_image_path, load_image_from_path
|
7 |
-
from tqdm import tqdm
|
8 |
-
VOTES = ["tievote", "leftvote", "rightvote", "bothbad_vote", "chat"]
|
9 |
-
|
10 |
-
|
11 |
-
def remove_html(raw):
|
12 |
-
if raw.startswith("<h3>"):
|
13 |
-
return raw[raw.find(": ") + 2 : -len("</h3>\n")]
|
14 |
-
if raw.startswith("### Model A: ") or raw.startswith("### Model B: "):
|
15 |
-
return raw[13:]
|
16 |
-
return raw
|
17 |
-
|
18 |
-
|
19 |
-
def read_file(filename):
|
20 |
-
data = []
|
21 |
-
for retry in range(5):
|
22 |
-
try:
|
23 |
-
# lines = open(filename).readlines()
|
24 |
-
for l in open(filename):
|
25 |
-
row = json.loads(l)
|
26 |
-
if row["type"] in VOTES:
|
27 |
-
data.append(row)
|
28 |
-
break
|
29 |
-
except FileNotFoundError:
|
30 |
-
time.sleep(2)
|
31 |
-
return data
|
32 |
-
|
33 |
-
|
34 |
-
def read_file_parallel(log_files, num_threads=16):
|
35 |
-
data_all = []
|
36 |
-
from multiprocessing import Pool
|
37 |
-
|
38 |
-
with Pool(num_threads) as p:
|
39 |
-
ret_all = list(tqdm(p.imap(read_file, log_files), total=len(log_files)))
|
40 |
-
for ret in ret_all:
|
41 |
-
data_all.extend(ret)
|
42 |
-
return data_all
|
43 |
-
|
44 |
-
def num_tokens(s:str):
|
45 |
-
if s is None:
|
46 |
-
return 0
|
47 |
-
return len(s) / 4
|
48 |
-
|
49 |
-
def main(
|
50 |
-
):
|
51 |
-
log_files = get_log_files()
|
52 |
-
data = read_file_parallel(log_files)
|
53 |
-
|
54 |
-
all_model_counts = defaultdict(int)
|
55 |
-
all_model_input_tokens_counts = defaultdict(list)
|
56 |
-
all_model_output_tokens_counts = defaultdict(list)
|
57 |
-
all_model_image_sizes = defaultdict(list)
|
58 |
-
chat_battle_counts = defaultdict(int)
|
59 |
-
for row in tqdm(data, desc="counting"):
|
60 |
-
if row['type'] == "chat":
|
61 |
-
chat_battle_counts["chat"] += 1
|
62 |
-
all_model_counts[row['model']] += 1
|
63 |
-
tstamp = row["tstamp"]
|
64 |
-
conv_id = row["state"]["conv_id"]
|
65 |
-
|
66 |
-
image = load_image_from_path(get_input_image_path(tstamp, conv_id))
|
67 |
-
if image is None:
|
68 |
-
image_size = None
|
69 |
-
else:
|
70 |
-
image_size = load_image_from_path(get_input_image_path(tstamp, conv_id)).size
|
71 |
-
all_model_image_sizes[row['model']].append(image_size)
|
72 |
-
try:
|
73 |
-
for message in row["state"]["messages"][row["state"]["offset"] :: 2]:
|
74 |
-
all_model_input_tokens_counts[row['model']].append(num_tokens(message[1]))
|
75 |
-
for message in row["state"]["messages"][row["state"]["offset"] + 1 :: 2]:
|
76 |
-
all_model_output_tokens_counts[row['model']].append(num_tokens(message[1]))
|
77 |
-
except Exception as e:
|
78 |
-
print(row)
|
79 |
-
raise e
|
80 |
-
|
81 |
-
else:
|
82 |
-
chat_battle_counts[row['type']] += 1
|
83 |
-
if row["models"][0] is None or row["models"][1] is None:
|
84 |
-
continue
|
85 |
-
|
86 |
-
# Resolve model names
|
87 |
-
models_public = [remove_html(row["models"][0]), remove_html(row["models"][1])]
|
88 |
-
if "model_name" in row["states"][0]:
|
89 |
-
models_hidden = [
|
90 |
-
row["states"][0]["model_name"],
|
91 |
-
row["states"][1]["model_name"],
|
92 |
-
]
|
93 |
-
if models_hidden[0] is None:
|
94 |
-
models_hidden = models_public
|
95 |
-
else:
|
96 |
-
models_hidden = models_public
|
97 |
-
|
98 |
-
if (models_public[0] == "" and models_public[1] != "") or (
|
99 |
-
models_public[1] == "" and models_public[0] != ""
|
100 |
-
):
|
101 |
-
continue
|
102 |
-
|
103 |
-
if models_public[0] == "" or models_public[0] == "Model A":
|
104 |
-
anony = True
|
105 |
-
models = models_hidden
|
106 |
-
else:
|
107 |
-
anony = False
|
108 |
-
models = models_public
|
109 |
-
if not models_public == models_hidden:
|
110 |
-
continue
|
111 |
-
|
112 |
-
all_model_counts[models[0]] += 1
|
113 |
-
all_model_counts[models[1]] += 1
|
114 |
-
tstamp = row["tstamp"]
|
115 |
-
conv_id1 = row["states"][0]["conv_id"]
|
116 |
-
conv_id2 = row["states"][1]["conv_id"]
|
117 |
-
|
118 |
-
image1 = load_image_from_path(get_input_image_path(tstamp, conv_id1))
|
119 |
-
image2 = load_image_from_path(get_input_image_path(tstamp, conv_id2))
|
120 |
-
all_model_image_sizes[models[0]].append(None if image1 is None else image1.size)
|
121 |
-
all_model_image_sizes[models[1]].append(None if image2 is None else image2.size)
|
122 |
-
|
123 |
-
for message in row["states"][0]["messages"][row["states"][0]["offset"] :: 2]:
|
124 |
-
all_model_input_tokens_counts[models[0]].append(num_tokens(message[1]))
|
125 |
-
for message in row["states"][0]["messages"][row["states"][0]["offset"] + 1 :: 2]:
|
126 |
-
all_model_output_tokens_counts[models[0]].append(num_tokens(message[1]))
|
127 |
-
for message in row["states"][1]["messages"][row["states"][1]["offset"] :: 2]:
|
128 |
-
all_model_input_tokens_counts[models[1]].append(num_tokens(message[1]))
|
129 |
-
for message in row["states"][1]["messages"][row["states"][1]["offset"] + 1 :: 2]:
|
130 |
-
all_model_output_tokens_counts[models[1]].append(num_tokens(message[1]))
|
131 |
-
|
132 |
-
print("### Chat battle counts (requests)")
|
133 |
-
print(json.dumps(chat_battle_counts, indent=4))
|
134 |
-
|
135 |
-
print("### Model counts (requests)")
|
136 |
-
print(json.dumps(all_model_counts, indent=4))
|
137 |
-
|
138 |
-
print("### Model Avg input tokens counts (tokens)")
|
139 |
-
average_input_tokens_counts = {}
|
140 |
-
for model, counts in all_model_input_tokens_counts.items():
|
141 |
-
average_input_tokens_counts[model] = sum(counts) / len(counts)
|
142 |
-
print(json.dumps(average_input_tokens_counts, indent=4))
|
143 |
-
|
144 |
-
print("### Model AVg output tokens counts (tokens)")
|
145 |
-
average_output_tokens_counts = {}
|
146 |
-
for model, counts in all_model_output_tokens_counts.items():
|
147 |
-
average_output_tokens_counts[model] = sum(counts) / len(counts)
|
148 |
-
print(json.dumps(average_output_tokens_counts, indent=4))
|
149 |
-
|
150 |
-
print("### Model Avg image sizes (height, width)")
|
151 |
-
average_image_sizes = {}
|
152 |
-
for model, sizes in all_model_image_sizes.items():
|
153 |
-
avg_height = sum([size[0] for size in sizes if size is not None]) / len(sizes)
|
154 |
-
avg_width = sum([size[1] for size in sizes if size is not None]) / len(sizes)
|
155 |
-
average_image_sizes[model] = (avg_height, avg_width)
|
156 |
-
print(json.dumps(average_image_sizes, indent=4))
|
157 |
-
|
158 |
-
print("### GPT-4V estimated cost (USD)")
|
159 |
-
gpt_4v_name = "gpt-4-vision-preview"
|
160 |
-
gpt_4v_cost = {}
|
161 |
-
gpt_4v_cost['input'] = sum(all_model_input_tokens_counts[gpt_4v_name]) / 1000 * 0.01
|
162 |
-
gpt_4v_cost['output'] = sum(all_model_output_tokens_counts[gpt_4v_name]) / 1000 * 0.03
|
163 |
-
|
164 |
-
all_image_cost = 0
|
165 |
-
for size in all_model_image_sizes[gpt_4v_name]:
|
166 |
-
if size is None:
|
167 |
-
continue
|
168 |
-
all_image_tokens = (size[0] // 512 + 1) * (size[1] // 512 + 1) * 170 + 85
|
169 |
-
all_image_cost += all_image_tokens / 1000 * 0.01
|
170 |
-
gpt_4v_cost['image'] = all_image_cost
|
171 |
-
print(json.dumps(gpt_4v_cost, indent=4))
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
if __name__ == "__main__":
|
177 |
-
fire.Fire(main)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/elo_rating/inspect_elo_rating_pkl.py
DELETED
@@ -1,33 +0,0 @@
|
|
1 |
-
import pickle
|
2 |
-
import plotly.graph_objects as go
|
3 |
-
|
4 |
-
def output_figure(data, figure_name="battle_count_heatmap", label="annoy"):
|
5 |
-
fig = data[label][figure_name]
|
6 |
-
fig.update_layout(
|
7 |
-
height=700,
|
8 |
-
width=700,
|
9 |
-
title={'text': f'{figure_name}', 'x': 0.5, 'y': 0.07},
|
10 |
-
xaxis_title="Model B",
|
11 |
-
yaxis_title="Model A",
|
12 |
-
# coloraxis_colorscale=[[0.0, '#0d0887'], [1.0, '#f0f921']],
|
13 |
-
margin={'t': 60}
|
14 |
-
)
|
15 |
-
fig.write_image(f"{figure_name}.png")
|
16 |
-
|
17 |
-
with open("./results/latest/elo_results.pkl",'rb') as f:
|
18 |
-
data = pickle.load(f)
|
19 |
-
print()
|
20 |
-
df = data["anony"]["leaderboard_table_df"]
|
21 |
-
# sort by rating
|
22 |
-
print(data["anony"].keys())
|
23 |
-
|
24 |
-
for figure_name in [ 'win_fraction_heatmap', 'battle_count_heatmap',]:
|
25 |
-
output_figure(data, figure_name, "anony")
|
26 |
-
|
27 |
-
df = df.sort_values(by=["rating"], ascending=False)
|
28 |
-
print(df)
|
29 |
-
df = data["full"]["leaderboard_table_df"]
|
30 |
-
# sort by rating
|
31 |
-
df = df.sort_values(by=["rating"], ascending=False)
|
32 |
-
print(df)
|
33 |
-
print('done')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/elo_rating/upload_battle_data.py
DELETED
@@ -1,168 +0,0 @@
|
|
1 |
-
import fire
|
2 |
-
import json
|
3 |
-
import os
|
4 |
-
import datasets
|
5 |
-
import random
|
6 |
-
import datetime
|
7 |
-
from pathlib import Path
|
8 |
-
from datetime import datetime
|
9 |
-
from PIL import Image
|
10 |
-
|
11 |
-
datasets.config.DEFAULT_MAX_BATCH_SIZE = 500
|
12 |
-
|
13 |
-
def create_hf_battle_dataset(data_file: str, split="test", task_type="t2i_generation"):
|
14 |
-
if task_type == "t2i_generation":
|
15 |
-
features = datasets.Features(
|
16 |
-
{
|
17 |
-
"index": datasets.Value("int32"),
|
18 |
-
"tstamp": datasets.Value("int32"),
|
19 |
-
"prompt": datasets.Value("string"),
|
20 |
-
"left_model": datasets.Value("string"),
|
21 |
-
"left_image": datasets.Image(),
|
22 |
-
"right_model": datasets.Value("string"),
|
23 |
-
"right_image": datasets.Image(),
|
24 |
-
"vote_type": datasets.Value("string"),
|
25 |
-
"winner": datasets.Value("string"),
|
26 |
-
"anony": datasets.Value("bool"),
|
27 |
-
"judge": datasets.Value("string"),
|
28 |
-
}
|
29 |
-
)
|
30 |
-
else:
|
31 |
-
raise ValueError(f"Task type {task_type} not supported")
|
32 |
-
hf_dataset = datasets.Dataset.from_list(
|
33 |
-
data_file,
|
34 |
-
features=features,
|
35 |
-
split=split,
|
36 |
-
)
|
37 |
-
return hf_dataset
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
def load_image(path:str):
|
43 |
-
try:
|
44 |
-
return Image.open(path)
|
45 |
-
except Exception as e:
|
46 |
-
print(f"Error loading image {path}: {e}")
|
47 |
-
return None
|
48 |
-
|
49 |
-
def get_date_from_time_stamp(unix_timestamp: int):
|
50 |
-
# Create a datetime object from the Unix timestamp
|
51 |
-
dt = datetime.fromtimestamp(unix_timestamp)
|
52 |
-
|
53 |
-
# Convert the datetime object to a string with the desired format
|
54 |
-
date_str = dt.strftime("%Y-%m-%d")
|
55 |
-
return date_str
|
56 |
-
|
57 |
-
def load_battle_image(battle, log_dir):
|
58 |
-
image_path = Path(log_dir) / f"{get_date_from_time_stamp(battle['tstamp'])}-convinput_images" / f"input_image_{battle['question_id']}.png"
|
59 |
-
return load_image(image_path)
|
60 |
-
|
61 |
-
def find_media_path(conv_id, task_type, log_dir):
|
62 |
-
media_directory_map = {
|
63 |
-
"t2i_generation": "images/generation",
|
64 |
-
"image_edition": "images/edition",
|
65 |
-
"text2video": "videos/generation"
|
66 |
-
}
|
67 |
-
if task_type == "t2i_generation":
|
68 |
-
media_path = Path(log_dir) / media_directory_map[task_type] / f"{conv_id}.jpg"
|
69 |
-
else:
|
70 |
-
raise ValueError(f"Task type {task_type} not supported")
|
71 |
-
return media_path
|
72 |
-
|
73 |
-
|
74 |
-
def main(
|
75 |
-
task_type='t2i_generation',
|
76 |
-
# data_file: str = "./results/latest/clean_battle_conv.json",
|
77 |
-
data_file: str = None,
|
78 |
-
repo_id: str = "TIGER-Lab/GenAI-Arena-human-eval",
|
79 |
-
log_dir: str = os.getenv("LOGDIR", "../GenAI-Arena-hf-logs/vote_log"),
|
80 |
-
config_name='battle',
|
81 |
-
split='test',
|
82 |
-
token = os.environ.get("HUGGINGFACE_TOKEN", None),
|
83 |
-
seed=42,
|
84 |
-
):
|
85 |
-
if data_file is None:
|
86 |
-
data_file = f"./results/latest/clean_battle_{task_type}.json"
|
87 |
-
if not os.path.exists(data_file):
|
88 |
-
raise ValueError(f"Data file {data_file} does not exist")
|
89 |
-
with open(data_file, "r") as f:
|
90 |
-
data = json.load(f)
|
91 |
-
|
92 |
-
# add index according to the tsamp
|
93 |
-
if seed is not None:
|
94 |
-
random.seed(seed)
|
95 |
-
|
96 |
-
|
97 |
-
data = sorted(data, key=lambda x: x['tstamp'])
|
98 |
-
required_keys_each_task = {
|
99 |
-
"image_editing": ["source_prompt", "target_prompt", "instruct_prompt"],
|
100 |
-
"t2i_generation": ["prompt"],
|
101 |
-
"video_generation": ["prompt"]
|
102 |
-
}
|
103 |
-
valid_data = []
|
104 |
-
for i, battle in enumerate(data):
|
105 |
-
if any(key not in battle['inputs'] for key in required_keys_each_task[task_type]):
|
106 |
-
# print(battle['inputs'])
|
107 |
-
# print(f"Skipping battle {i} due to missing keys")
|
108 |
-
continue
|
109 |
-
valid_data.append(battle)
|
110 |
-
print(f"Total battles: {len(data)}, valid battles: {len(valid_data)}, removed battles: {len(data) - len(valid_data)}")
|
111 |
-
data = valid_data
|
112 |
-
|
113 |
-
# data = random.sample(data, 50 * 7+2)
|
114 |
-
|
115 |
-
for i, battle in enumerate(data):
|
116 |
-
battle['index'] = i
|
117 |
-
|
118 |
-
|
119 |
-
new_data = []
|
120 |
-
if task_type == 't2i_generation':
|
121 |
-
for battle in data:
|
122 |
-
prompt = battle['inputs']['prompt']
|
123 |
-
model_a = battle['model_a']
|
124 |
-
model_b = battle['model_b']
|
125 |
-
model_a_conv_id = battle['model_a_conv_id']
|
126 |
-
model_b_conv_id = battle['model_b_conv_id']
|
127 |
-
tstamp = battle['tstamp']
|
128 |
-
vote_type = battle['vote_type']
|
129 |
-
left_image_path = find_media_path(model_a_conv_id, task_type, log_dir)
|
130 |
-
right_image_path = find_media_path(model_b_conv_id, task_type, log_dir)
|
131 |
-
left_image = load_image(left_image_path)
|
132 |
-
right_image = load_image(right_image_path)
|
133 |
-
if left_image is None or right_image is None:
|
134 |
-
print(f"Skipping battle {battle['index']} due to missing images")
|
135 |
-
continue
|
136 |
-
new_data.append({
|
137 |
-
"index": battle['index'],
|
138 |
-
"tstamp": tstamp,
|
139 |
-
"prompt": prompt,
|
140 |
-
"left_model": model_a,
|
141 |
-
"left_image": left_image,
|
142 |
-
"right_model": model_b,
|
143 |
-
"right_image": right_image,
|
144 |
-
"vote_type": vote_type,
|
145 |
-
"winner": battle['winner'],
|
146 |
-
"anony": battle['anony'],
|
147 |
-
"judge": battle['judge'],
|
148 |
-
})
|
149 |
-
split = "test"
|
150 |
-
hf_dataset = create_hf_battle_dataset(new_data, split, task_type)
|
151 |
-
else:
|
152 |
-
raise ValueError(f"Task type {task_type} not supported")
|
153 |
-
|
154 |
-
print(hf_dataset)
|
155 |
-
print(f"Uploading to part {repo_id}:{split}...")
|
156 |
-
hf_dataset.push_to_hub(
|
157 |
-
repo_id=repo_id,
|
158 |
-
config_name=config_name,
|
159 |
-
split=split,
|
160 |
-
token=token,
|
161 |
-
commit_message=f"Add vision-arena {split} dataset",
|
162 |
-
)
|
163 |
-
|
164 |
-
print("Done!")
|
165 |
-
|
166 |
-
|
167 |
-
if __name__ == "__main__":
|
168 |
-
fire.Fire(main)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/elo_rating/utils.py
DELETED
@@ -1,91 +0,0 @@
|
|
1 |
-
from datetime import datetime
|
2 |
-
import pytz
|
3 |
-
import PIL
|
4 |
-
import os
|
5 |
-
|
6 |
-
import sys
|
7 |
-
sys.path.append('../')
|
8 |
-
from model.model_registry import get_model_info
|
9 |
-
|
10 |
-
def detect_language(text: str) -> str:
|
11 |
-
"""Detect the langauge of a string."""
|
12 |
-
try:
|
13 |
-
import polyglot # pip3 install polyglot pyicu pycld2
|
14 |
-
from polyglot.detect import Detector
|
15 |
-
from polyglot.detect.base import logger as polyglot_logger
|
16 |
-
import pycld2
|
17 |
-
except ImportError as e:
|
18 |
-
print("Please install the required libraries: polyglot, pycld2: pip3 install polyglot pyicu pycld2")
|
19 |
-
exit(1)
|
20 |
-
|
21 |
-
polyglot_logger.setLevel("ERROR")
|
22 |
-
|
23 |
-
try:
|
24 |
-
lang_code = Detector(text).language.name
|
25 |
-
except (pycld2.error, polyglot.detect.base.UnknownLanguage):
|
26 |
-
lang_code = "unknown"
|
27 |
-
return lang_code
|
28 |
-
|
29 |
-
|
30 |
-
def get_time_stamp_from_date(date_str:str):
|
31 |
-
"""
|
32 |
-
Convert a date string to a Unix timestamp
|
33 |
-
Args:
|
34 |
-
date_str (str): The input date string in the format 'YYYY-MM-DD-HH:MM-TZ', e.g. '2024-02-10-14:00-PT'
|
35 |
-
"""
|
36 |
-
|
37 |
-
# Convert the date string into a format that Python's datetime can understand
|
38 |
-
# and specify the correct timezone for PT, which is 'US/Pacific'
|
39 |
-
date_format = "%Y-%m-%d-%H:%M-%Z"
|
40 |
-
|
41 |
-
# Parse the date string into a datetime object
|
42 |
-
# Note: PT is not directly recognized by pytz, so we manually map it to 'US/Pacific'
|
43 |
-
timezone_map = {
|
44 |
-
"PT": "US/Pacific",
|
45 |
-
}
|
46 |
-
|
47 |
-
# Extract the timezone abbreviation
|
48 |
-
tz_abbr = date_str.split("-")[-1]
|
49 |
-
# Map the abbreviation to a pytz timezone
|
50 |
-
tz_info = pytz.timezone(timezone_map[tz_abbr])
|
51 |
-
|
52 |
-
# Remove the timezone abbreviation for parsing
|
53 |
-
date_str_parsed = date_str.rsplit("-", 1)[0]
|
54 |
-
|
55 |
-
# Create a datetime object with the corresponding timezone
|
56 |
-
dt = datetime.strptime(date_str_parsed, "%Y-%m-%d-%H:%M").replace(tzinfo=tz_info)
|
57 |
-
|
58 |
-
# Convert the datetime object to a Unix timestamp
|
59 |
-
unix_timestamp = dt.timestamp()
|
60 |
-
return unix_timestamp
|
61 |
-
|
62 |
-
def get_date_from_time_stamp(unix_timestamp: int):
|
63 |
-
# Create a datetime object from the Unix timestamp
|
64 |
-
dt = datetime.fromtimestamp(unix_timestamp)
|
65 |
-
|
66 |
-
# Convert the datetime object to a string with the desired format
|
67 |
-
date_str = dt.strftime("%Y-%m-%d %H:%M:%S %Z")
|
68 |
-
return date_str
|
69 |
-
|
70 |
-
|
71 |
-
def get_input_image_path(tstamp, conv_id):
|
72 |
-
# from tstamp to date e.g. 2024-02-10
|
73 |
-
date_str = datetime.fromtimestamp(tstamp, tz=pytz.timezone("US/Pacific")).strftime("%Y-%m-%d")
|
74 |
-
LOGDIR = os.getenv("LOGDIR")
|
75 |
-
return f"{LOGDIR}/{date_str}-convinput_images/input_image_{conv_id}.png"
|
76 |
-
|
77 |
-
def load_image_from_path(image_path):
|
78 |
-
# Load the image from the specified
|
79 |
-
# path using the Python Imaging Library (PIL)
|
80 |
-
try:
|
81 |
-
image = PIL.Image.open(image_path)
|
82 |
-
return image
|
83 |
-
except FileNotFoundError:
|
84 |
-
print(f"Image not found at path: {image_path}")
|
85 |
-
return None
|
86 |
-
except PIL.UnidentifiedImageError:
|
87 |
-
print(f"Unidentified image format at path: {image_path}")
|
88 |
-
return None
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/evaluator/convert_to_evaluator_data.py
DELETED
@@ -1,134 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import json
|
3 |
-
import os
|
4 |
-
import time
|
5 |
-
from pytz import timezone
|
6 |
-
from tqdm import tqdm
|
7 |
-
import base64
|
8 |
-
from icecream import ic
|
9 |
-
from PIL import Image
|
10 |
-
|
11 |
-
|
12 |
-
# Function to encode the image
|
13 |
-
def encode_image(image_path):
|
14 |
-
with open(image_path, "rb") as image_file:
|
15 |
-
return base64.b64encode(image_file.read()).decode('utf-8')
|
16 |
-
|
17 |
-
def get_log_files(max_num_files=None):
|
18 |
-
dates = []
|
19 |
-
for month in [2, 3]:
|
20 |
-
for day in range(1, 32):
|
21 |
-
dates.append(f"2024-{month:02d}-{day:02d}")
|
22 |
-
|
23 |
-
num_servers = 1
|
24 |
-
filenames = []
|
25 |
-
for d in dates:
|
26 |
-
for i in range(num_servers):
|
27 |
-
# name = os.path.expanduser(f"~/fastchat_logs/server{i}/{d}-conv.json")
|
28 |
-
name = os.path.expanduser(f"vision-arena-logs/{d}-conv.json")
|
29 |
-
if os.path.exists(name):
|
30 |
-
filenames.append(name)
|
31 |
-
max_num_files = max_num_files or len(filenames)
|
32 |
-
filenames = filenames[-max_num_files:]
|
33 |
-
return filenames
|
34 |
-
|
35 |
-
|
36 |
-
def pretty_print_conversation(messages):
|
37 |
-
for role, msg in messages:
|
38 |
-
print(f"[[{role}]]: {msg}")
|
39 |
-
|
40 |
-
task_template_map = {
|
41 |
-
"image_caption": "Give me the semantic alignment score between the given image and the given caption: \"{generated_sentence}\" on a scale of 0-100. Only reply the score value.",
|
42 |
-
"vqa": "Rate the answer correctness regarding the question within the context of the given image on a scale of 0-100. Only reply the score value.",
|
43 |
-
"pair_rate_old": "[Instruction]\n\"{instruction}\"\n\n\"{generated_sentence}\"\n\n[System]\nGiven the instruction and the image, please compare the correctness of responses A and B. Reply with \"leftvote\" if you find A better, \"rightvote\" if B is better, \"bothbad_vote\" if both responses are wrong, and \"tievote\" if both responses are equally satisfactory. If you are unable to make a decision, please reply with \"NA\".",
|
44 |
-
"pair_rate_wexplanation": "<image>[Instruction]\n\"{instruction}\"\n\n\"{generated_sentence}\"[System]\nPlease act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the user question displayed below. You should choose the assistant that follows the user’s instructions and answers the user’s question better. Your evaluation should consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and level of detail of their responses. Begin your evaluation by comparing the two responses and provide a short explanation. Avoid any positional biases and ensure that the order in which the responses were presented does not influence your decision. Do not allow the length of the responses to influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible. After providing your explanation, output your final verdict by strictly following this format: \"[[A]]\" if assistant A is better, \"[[B]]\" if assistant B is better, and \"[[C]]\" for a tie.",
|
45 |
-
"pair_rate": "<image>[Instruction]\n\"{instruction}\"\n\n\"{generated_sentence}\"\n\n[System]\nPlease act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the user question displayed below. You should choose the assistant that follows the user’s instructions and answers the user’s question better. Your evaluation should consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and level of detail of their responses. Begin your evaluation by comparing the two responses and provide a short explanation. Avoid any positional biases and ensure that the order in which the responses were presented does not influence your decision. Do not allow the length of the responses to influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible. Reply with \"leftvote\" if you find assistant A better, \"rightvote\" if assistant B is better, \"bothbad_vote\" if both responses are wrong, and \"tievote\" if both assistants provide equally satisfactory answers. If you are unable to make a decision, please reply with \"NA\"."
|
46 |
-
}
|
47 |
-
|
48 |
-
def inspect_convs(log_files):
|
49 |
-
json_data = []
|
50 |
-
|
51 |
-
ic(log_files)
|
52 |
-
total_vote = 0
|
53 |
-
|
54 |
-
for filename in tqdm(log_files, desc="read files"):
|
55 |
-
for retry in range(5):
|
56 |
-
try:
|
57 |
-
lines = open(filename).readlines()
|
58 |
-
break
|
59 |
-
except FileNotFoundError:
|
60 |
-
time.sleep(2)
|
61 |
-
|
62 |
-
for l in lines:
|
63 |
-
row = json.loads(l)
|
64 |
-
|
65 |
-
if "states" not in row:
|
66 |
-
continue
|
67 |
-
if row["type"] not in ["leftvote", "rightvote", "bothbad_vote", "tievote"]:
|
68 |
-
continue
|
69 |
-
|
70 |
-
model_names = row["states"][0]["model_name"], row["states"][1]["model_name"]
|
71 |
-
|
72 |
-
|
73 |
-
# Iterate through each state and write the relevant information
|
74 |
-
if not len(row["states"][0]['messages']): continue
|
75 |
-
# ic(row["states"][0]['messages'][1][1])
|
76 |
-
|
77 |
-
if row["states"][0]['messages'][1][1] is None or row["states"][1]['messages'][1][1] is None or "NETWORK ERROR" in row["states"][0]['messages'][1][1] or "NETWORK ERROR" in row["states"][1]['messages'][1][1]: continue
|
78 |
-
total_vote += 1
|
79 |
-
|
80 |
-
conv_id = row["states"][0]['conv_id']
|
81 |
-
image_path = os.path.join("/local/home/yujielu/project/Arena-Elo/vision-arena-logs", os.path.basename(filename)[:-5]+"input_images", f"input_image_{conv_id}.png")
|
82 |
-
if not os.path.exists(image_path) :
|
83 |
-
continue
|
84 |
-
try:
|
85 |
-
image = Image.open(image_path).convert("RGB")
|
86 |
-
except:
|
87 |
-
continue
|
88 |
-
|
89 |
-
left_response = row["states"][0]['messages'][1][1]
|
90 |
-
right_response = row["states"][1]['messages'][1][1]
|
91 |
-
instruction = row["states"][0]['messages'][0][1]
|
92 |
-
generated_sentence = f"[The Start of Assistant A’s Answer]\n{left_response}\n[The End of Assistant A’s Answer]\n\n[The Start of Assistant B’s Answer]\n{right_response}\n[The End of Assistant B’s Answer]"
|
93 |
-
text_prompt = task_template_map["pair_rate"].format(instruction=instruction, generated_sentence=generated_sentence)
|
94 |
-
|
95 |
-
user_input = text_prompt
|
96 |
-
# Create the conversation structure
|
97 |
-
conversation = [
|
98 |
-
{
|
99 |
-
"from": "human",
|
100 |
-
"value": user_input
|
101 |
-
},
|
102 |
-
{
|
103 |
-
"from": "gpt",
|
104 |
-
"value": row["type"]
|
105 |
-
}
|
106 |
-
]
|
107 |
-
|
108 |
-
# Create the JSON object for each row
|
109 |
-
json_obj = {
|
110 |
-
"id": conv_id,
|
111 |
-
"image": image_path,
|
112 |
-
"conversations": conversation
|
113 |
-
}
|
114 |
-
|
115 |
-
# Append the JSON object to the list
|
116 |
-
json_data.append(json_obj)
|
117 |
-
|
118 |
-
# Write the JSON data to a file
|
119 |
-
with open('output_evaluator_data.json', 'w') as json_file:
|
120 |
-
json.dump(json_data, json_file, indent=2)
|
121 |
-
|
122 |
-
if __name__ == "__main__":
|
123 |
-
parser = argparse.ArgumentParser()
|
124 |
-
parser.add_argument("--max-num-files", type=int)
|
125 |
-
args = parser.parse_args()
|
126 |
-
|
127 |
-
log_files = get_log_files(args.max_num_files)
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
inspect_convs(log_files)
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/evaluator/rating_analysis.ipynb
DELETED
@@ -1,321 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 43,
|
6 |
-
"metadata": {},
|
7 |
-
"outputs": [
|
8 |
-
{
|
9 |
-
"name": "stdout",
|
10 |
-
"output_type": "stream",
|
11 |
-
"text": [
|
12 |
-
"1338\n",
|
13 |
-
"1044\n"
|
14 |
-
]
|
15 |
-
}
|
16 |
-
],
|
17 |
-
"source": [
|
18 |
-
"\n",
|
19 |
-
"import pandas as pd\n",
|
20 |
-
"import json\n",
|
21 |
-
"\n",
|
22 |
-
"# Replace 'your_file_name.csv' with the path to your CSV file\n",
|
23 |
-
"file_name = 'all_pairvote_log_wgpt.csv'\n",
|
24 |
-
"\n",
|
25 |
-
"# Load the CSV file into a DataFrame\n",
|
26 |
-
"df = pd.read_csv(file_name)\n",
|
27 |
-
"\n",
|
28 |
-
"# Define a function to parse JSON data\n",
|
29 |
-
"def parse_json(data):\n",
|
30 |
-
" try:\n",
|
31 |
-
" # Parse the JSON data\n",
|
32 |
-
" return json.loads(data)\n",
|
33 |
-
" except ValueError as e:\n",
|
34 |
-
" # Return None or an empty dictionary if the data cannot be parsed\n",
|
35 |
-
" return None\n",
|
36 |
-
"\n",
|
37 |
-
"# Apply the parse_json function to the 'models' and 'states' columns\n",
|
38 |
-
"df['models'] = df['models'].apply(parse_json)\n",
|
39 |
-
"df['states'] = df['states'].apply(parse_json)\n",
|
40 |
-
"# row[\"states\"][0]['messages'][0][1]\n",
|
41 |
-
"\n",
|
42 |
-
"# Now df contains the parsed JSON data in the 'models' and 'states' columns\n",
|
43 |
-
"# print(df.head())\n",
|
44 |
-
"print(len(df))\n",
|
45 |
-
"# filter_vote_df = df[df[\"gpt_vote\"].isin([\"leftvote\", \"rightvote\"])]#, \"tievote\", \"bothbad_vote\"\n",
|
46 |
-
"# \\#1\n",
|
47 |
-
"filter_vote_df = df[df[\"gpt_vote\"].isin([\"leftvote\", \"rightvote\", \"tievote\", \"bothbad_vote\"])]\n",
|
48 |
-
"# \\#2\n",
|
49 |
-
"# filter_vote_df = df\n",
|
50 |
-
"filter_vote_df.loc[~filter_vote_df[\"gpt_vote\"].isin([\"leftvote\", \"rightvote\"]), \"gpt_vote\"] = \"tie\"\n",
|
51 |
-
"filter_vote_df.loc[~filter_vote_df[\"type\"].isin([\"leftvote\", \"rightvote\"]), \"type\"] = \"tie\"\n",
|
52 |
-
"# \\#3\n",
|
53 |
-
"#[df[\"gpt_vote\"].isin([\"leftvote\", \"rightvote\"]) & df[\"type\"].isin([\"leftvote\", \"rightvote\"])]\n",
|
54 |
-
"filtered_df = filter_vote_df[filter_vote_df[\"states\"].apply(lambda x: len(x[0]['messages'][0][1]) > 10)]\n",
|
55 |
-
"print(len(filtered_df))\n"
|
56 |
-
]
|
57 |
-
},
|
58 |
-
{
|
59 |
-
"cell_type": "code",
|
60 |
-
"execution_count": 44,
|
61 |
-
"metadata": {},
|
62 |
-
"outputs": [
|
63 |
-
{
|
64 |
-
"name": "stdout",
|
65 |
-
"output_type": "stream",
|
66 |
-
"text": [
|
67 |
-
"Confusion Matrix:\n",
|
68 |
-
"[[300 61 34]\n",
|
69 |
-
" [102 269 27]\n",
|
70 |
-
" [ 99 111 41]]\n",
|
71 |
-
"\n",
|
72 |
-
"Accuracy: 0.5842911877394636\n"
|
73 |
-
]
|
74 |
-
}
|
75 |
-
],
|
76 |
-
"source": [
|
77 |
-
"import warnings\n",
|
78 |
-
"warnings.filterwarnings('ignore')\n",
|
79 |
-
"\n",
|
80 |
-
"from sklearn.metrics import confusion_matrix, accuracy_score\n",
|
81 |
-
"import pandas as pd\n",
|
82 |
-
"\n",
|
83 |
-
"# Assuming df is your DataFrame\n",
|
84 |
-
"\n",
|
85 |
-
"# True labels\n",
|
86 |
-
"y_true = filtered_df[\"type\"]\n",
|
87 |
-
"\n",
|
88 |
-
"# Predictions\n",
|
89 |
-
"y_pred = filtered_df[\"gpt_vote\"]\n",
|
90 |
-
"\n",
|
91 |
-
"# Compute the confusion matrix\n",
|
92 |
-
"# conf_matrix = confusion_matrix(y_true, y_pred, labels=[\"leftvote\", \"rightvote\", \"tievote\", \"bothbad_vote\"])\n",
|
93 |
-
"conf_matrix = confusion_matrix(y_true, y_pred, labels=[\"leftvote\", \"rightvote\", \"tie\"])\n",
|
94 |
-
"\n",
|
95 |
-
"# Compute the accuracy\n",
|
96 |
-
"accuracy = accuracy_score(y_true, y_pred)\n",
|
97 |
-
"\n",
|
98 |
-
"print(\"Confusion Matrix:\")\n",
|
99 |
-
"print(conf_matrix)\n",
|
100 |
-
"\n",
|
101 |
-
"print(\"\\nAccuracy:\", accuracy)\n"
|
102 |
-
]
|
103 |
-
},
|
104 |
-
{
|
105 |
-
"cell_type": "code",
|
106 |
-
"execution_count": 45,
|
107 |
-
"metadata": {},
|
108 |
-
"outputs": [
|
109 |
-
{
|
110 |
-
"data": {
|
111 |
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0YAAAJwCAYAAACtcHEcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0yUlEQVR4nO3deZyN5f/H8feZfcaYMZaxMwyGkTWJURSKKFshS/YtREQoe4oKaVFpsaRBZUlRUrLLUtYsk2VkaYSxjGEYZq7fH37O12ksc8aMM+N+PR+P83jMXPd9X+dzxrnHec913ddtM8YYAQAAAICFubm6AAAAAABwNYIRAAAAAMsjGAEAAACwPIIRAAAAAMsjGAEAAACwPIIRAAAAAMsjGAEAAACwPIIRAAAAAMsjGAEAAACwPIIRAAAWsWTJElWsWFE+Pj6y2Ww6c+ZMuvY/ffp02Ww2HTx4MF37zcpsNptGjhzp6jIApALBCECafPjhh7LZbHrwwQddXcodu/Zh7vfff7/h9kceeUT33XffXa7q3hQdHa3evXurVKlS8vPzk5+fn8LDw9WrVy9t377dYd+RI0fKZrPZH9f2HTp0qOLi4iTJYfutHitWrLhtbZcvX1Z4eLhsNpvGjx9vb+/Tp49sNpv27dt302NfffVV2Wy2FK/hRlasWKFmzZopX7588vLyUnBwsJ566inNnz//tsfeidjYWLVo0UK+vr6aPHmyZs6cqWzZsmXoc95NISEhstlsqlu37g23f/rpp/b3w83O9VtZt26dRo4cme5hEkDm4eHqAgBkTZGRkQoJCdHGjRu1b98+lShRwtUlIZNbtGiRWrZsKQ8PD7Vp00YVKlSQm5ub9uzZo/nz5+ujjz5SdHS0ihYt6nDcRx99JH9/f8XHx2vp0qV6/fXX9euvv2rt2rWaOXOmw75ffPGFfv755xTtZcqUuW1977//vg4dOpSivU2bNnr//fc1a9YsDR8+/IbHzp49W+XKlVP58uVv+RwjRozQ6NGjVbJkSXXv3l1FixZVbGysfvjhBz399NOKjIxU69atb1trWmzatEnnzp3Ta6+9dtPwcKeee+45Pfvss/L29s6Q/m/Hx8dHy5cv17Fjx5QvXz6HbZGRkfLx8dHFixfT1Pe6des0atQodejQQTly5Ej1cQkJCfLw4OMWkCUYAHDSgQMHjCQzf/58kydPHjNy5MhUHXf58mVz6dKlDK7OedOmTTOSzKZNm264vVatWqZs2bJ3uap7y759+0y2bNlMmTJlzD///JNi++XLl827775rDh06ZG8bMWKEkWROnDjhsG+zZs2MJLNu3boU/fTq1cuk5b+2f//91wQGBprRo0cbSebtt9922F6iRAlTunTpGx67bt06I8mMGzfuls/xzTffGEnmmWeeMYmJiSm2L1myxHz//fdO155aM2bMuOX7PKsrWrSoqVOnjgkICDCTJk1y2Hb48GHj5uZmnn766TT/DN5++20jyURHR99236SkJJOQkOD0cwBwLabSAXBaZGSkgoKC1LBhQz3zzDOKjIxMsc/BgwftU5ImTZqk0NBQeXt7a9euXZKkPXv26JlnnlHOnDnl4+OjKlWq6LvvvnPo49oUt7Vr16p///7KkyePsmXLpqZNm+rEiRMO+y5cuFANGzZUgQIF5O3trdDQUL322mtKSkpK99d/7bVNnz49xbb/Xk9wbTrYX3/9pbZt2yowMFB58uTRsGHDZIzR4cOH1bhxYwUEBChfvnyaMGGCQ3+JiYkaPny47r//fgUGBipbtmx6+OGHtXz58hvWNH78eH3yySf2n/cDDzygTZs23fL1/P7777LZbJoxY0aKbT/99JNsNpsWLVokSTp37pxefPFFhYSEyNvbW8HBwXrssce0efPmWz7HW2+9pfPnz2vatGnKnz9/iu0eHh7q06ePChcufMt+JKl27dqSrk7LSy+DBw9WWFiY2rZte8Ptbdq00Z49e274OmfNmiWbzaZWrVrd8jmGDRumnDlzaurUqfL09EyxvV69enryySft3x8/flydO3dW3rx55ePjowoVKqT4N0rtv/sjjzyi9u3bS5IeeOAB2Ww2dejQQdLVKWjXvr7eI488okceecSh7f3331fZsmXl5+enoKAgValSRbNmzbJvv9k1Rh9++KHKli0rb29vFShQQL169UoxJe3alNVdu3bp0UcflZ+fnwoWLKi33nrrZj/SFHx8fNSsWTOHmqSrI3pBQUGqV69eimO2b9+uDh06qHjx4vLx8VG+fPnUqVMnxcbG2vcZOXKkBg4cKEkqVqyYfUretddps9nUu3dvRUZG2l/nkiVL7Nuu/U5ISEhQ6dKlVbp0aSUkJNj7P3XqlPLnz6+IiIgM+Z0FIHUY2wXgtMjISDVr1kxeXl5q1aqVPvroI23atEkPPPBAin2nTZumixcvqlu3bvL29lbOnDm1c+dO1ahRQwULFtTgwYOVLVs2ff3112rSpInmzZunpk2bOvTxwgsvKCgoSCNGjNDBgwc1adIk9e7dW1999ZV9n+nTp8vf31/9+/eXv7+/fv31Vw0fPlxxcXF6++23U/W6zp49q5MnT6Zov3z5spM/oZRatmypMmXKaNy4cVq8eLHGjBmjnDlzasqUKapdu7befPNNRUZGasCAAXrggQdUs2ZNSVJcXJw+++wztWrVSl27dtW5c+f0+eefq169etq4caMqVqzo8DyzZs3SuXPn1L17d9lsNr311ltq1qyZDhw4cMMP45JUpUoVFS9eXF9//bX9w/M1X331lcMHyh49emju3Lnq3bu3wsPDFRsbqzVr1mj37t2qXLnyTV//okWLVKJEiXS5Jm3//v2SpFy5ct1xX5K0ceNGzZgxQ2vWrJHNZrvhPm3atNGoUaM0a9Ysh9eZlJSkr7/+Wg8//LCKFCly0+fYu3ev9uzZo06dOil79uy3rSkhIUGPPPKI9u3bp969e6tYsWL65ptv1KFDB505c0Z9+/Z12P92/+6vvvqqwsLC9Mknn2j06NEqVqyYQkNDU/kTuurTTz9Vnz599Mwzz6hv3766ePGitm/frg0bNtxy+t/IkSM1atQo1a1bV88//7yioqLsvzPWrl3r8L48ffq06tevr2bNmqlFixaaO3euBg0apHLlyumJJ55IVZ2tW7fW448/rv3799tf46xZs/TMM8/c8Bz4+eefdeDAAXXs2FH58uXTzp079cknn2jnzp1av369bDabmjVrpr/++kuzZ8/WO++8o9y5c0uS8uTJY+/n119/1ddff63evXsrd+7cCgkJSfFcvr6+mjFjhmrUqKFXX31VEydOlCT16tVLZ8+e1fTp0+Xu7p6q1wkgA7h6yApA1vL7778bSebnn382xhiTnJxsChUqZPr27euwX3R0tJFkAgICzPHjxx221alTx5QrV85cvHjR3pacnGwiIiJMyZIl7W3XprjVrVvXJCcn29v79etn3N3dzZkzZ+xtFy5cSFFr9+7djZ+fn8Pz3Mi157nV4/qpdNde27Rp01L0JcmMGDHC/v216WDdunWzt125csUUKlTI2Gw2h+lXp0+fNr6+vqZ9+/YO+/53+uHp06dN3rx5TadOnVLUlCtXLnPq1Cl7+8KFC42k207RGjJkiPH09HQ49tKlSyZHjhwOzxMYGGh69ep1y77+6+zZs0aSadKkSYptp0+fNidOnLA/rv93vPazi4qKMidOnDDR0dFmypQpxtvb2+TNm9ecP38+RX/OTqVLTk42VatWNa1atTLG/O/n+N+pdMYY88ADD5hChQqZpKQke9uSJUuMJDNlypRbPs+1f4d33nknVXVNmjTJSDJffvmlvS0xMdFUr17d+Pv7m7i4OId6U/PvfrMpo0WLFnV4z11Tq1YtU6tWLfv3jRs3vu2U0mvPcW262fHjx42Xl5d5/PHHHX5uH3zwgZFkpk6d6vB8kswXX3xhb7t06ZLJly+fefrpp2/5vNdeR8OGDc2VK1dMvnz5zGuvvWaMMWbXrl1Gklm5cuUNfwY3+t0xe/ZsI8msWrXK3narqXSSjJubm9m5c+cNt13/O8GYq+ebm5ubWbVqlX2K5X+n/wG4+5hKB8ApkZGRyps3rx599FFJV6eJtGzZUnPmzLnhFJCnn37a4a+qp06d0q+//qoWLVro3LlzOnnypE6ePKnY2FjVq1dPe/fu1dGjRx366Natm8Nf8h9++GElJSXp77//trf5+vrav77W78MPP6wLFy5oz549qXptkydP1s8//5zicbsL6lOjS5cu9q/d3d1VpUoVGWPUuXNne3uOHDkUFhamAwcOOOzr5eUlSUpOTtapU6d05coVValS5YbTulq2bKmgoCD79w8//LAkOfR5Iy1bttTly5cdVkZbunSpzpw5o5YtWzrUuGHDBv3zzz+pfen2FeT8/f1TbHvkkUeUJ08e+2Py5Mkp9gkLC1OePHlUrFgxde/eXSVKlNDixYvl5+eX6hpuZvr06dqxY4fefPPN2+7btm1bHTlyRKtWrbK3zZo1S15eXmrevPktj732M0jNaJEk/fDDD8qXL5/D9DxPT0/16dNH8fHxWrlypcP+af13d0aOHDl05MiR207NvN4vv/yixMREvfjii3Jz+99Hjq5duyogIECLFy922N/f399hOqOXl5eqVq3q1Otwd3dXixYtNHv2bElXf2cVLlzY/jP5r+t/d1y8eFEnT55UtWrVJOm2U0SvV6tWLYWHh6dq35EjR6ps2bJq3769evbsqVq1aqlPnz6pfi4AGYNgBCDVkpKSNGfOHD366KOKjo7Wvn37tG/fPj344IP6999/tWzZshTHFCtWzOH7ffv2yRijYcOGOXwgzpMnj0aMGCHp6rUV1/vvFKVrHwBPnz5tb9u5c6eaNm2qwMBABQQEKE+ePPYPWGfPnk3V66tatarq1q2b4nH9B860+u9rCAwMlI+Pj31KzvXt178uSZoxY4bKly8vHx8f5cqVS3ny5NHixYtv+LpS87O6kQoVKqh06dIO0xO/+uor5c6d235Nj3T1WqE///xThQsXVtWqVTVy5Mjbfmi9Fgbi4+NTbJsyZYp+/vlnffnllzc9ft68efr555+1YsUK7du3T3/++afuv//+Wz7n9eLj43Xs2DH749r1aXFxcRoyZIgGDhyYqmubnn32Wbm7u9uvX7l48aIWLFigJ5544rbvkYCAAElXQ3tq/P333ypZsqRDmJD+t7re9X8UkNL+7+6MQYMGyd/fX1WrVlXJkiXVq1cvrV279pbHXKszLCzMod3Ly0vFixdP8ToKFSqUYjpjUFCQ06+jdevW2rVrl7Zt26ZZs2bp2Wefvek0yVOnTqlv377KmzevfH197SFcSv3vDinl77pb8fLy0tSpUxUdHa1z585p2rRpN60PwN3DNUYAUu3XX39VTEyM5syZozlz5qTYHhkZqccff9yh7fq/xkpXRz0kacCAATe8EFpSiqW/bzbn3hgjSTpz5oxq1aqlgIAAjR49WqGhofLx8dHmzZs1aNAg+3Oml5t9gLnVRdM3eg23e12S9OWXX6pDhw5q0qSJBg4cqODgYLm7u2vs2LH2a22c7fNmWrZsqddff10nT55U9uzZ9d1336lVq1YOSw23aNFCDz/8sBYsWKClS5fq7bff1ptvvqn58+ff9BqQwMBA5c+fX3/++WeKbdeuObrVDUFr1qyZIkA6Y/z48Ro1apT9+6JFi+rgwYMaP368EhMT1bJlS/vzHzlyRNLVQHHw4EEVKFDAPmJ3baGJefPmafLkyfr+++917tw5tWnT5rY1lC5dWpK0Y8eONL+OW7mTf/dbvZ+v77dMmTKKiorSokWLtGTJEs2bN08ffvihhg8f7vDzvRN38jqu9+CDDyo0NFQvvviioqOjb3kNVIsWLbRu3ToNHDhQFStWlL+/v5KTk1W/fn2nfnf893fd7fz000+SrgbsvXv3OhWsAGQMghGAVIuMjFRwcPANpzvNnz9fCxYs0Mcff3zLDwjFixeXdHVaUHrdS2XFihWKjY3V/Pnz7YsWSOm7atn1rv01/r+rav33r9/pYe7cuSpevLjmz5/v8AH22uhaemrZsqVGjRqlefPmKW/evIqLi9Ozzz6bYr/8+fOrZ8+e6tmzp44fP67KlSvr9ddfv+XF8Q0bNtRnn32mjRs3qmrVqule+620a9dODz30kP37a+/PQ4cO6fTp0ypbtmyKY9544w298cYb2rJli8MCF23atNGSJUv0448/atasWQoICNBTTz112xpKlSqlsLAwLVy4UO++++4NpxVer2jRotq+fbuSk5MdRo2uTQv9772e7kRQUNANb1r6999/28/Xa7Jly6aWLVuqZcuWSkxMVLNmzfT6669ryJAh8vHxueHrkKSoqCiHvhITExUdHZ1h91OSpFatWmnMmDEqU6ZMikVKrjl9+rSWLVumUaNGOdyjau/evSn2Tc8Rne3bt2v06NHq2LGjtm7dqi5dumjHjh0KDAxMt+cA4Dym0gFIlYSEBM2fP19PPvmknnnmmRSP3r1769y5cymW3P6v4OBgPfLII5oyZYpiYmJSbP/vMtypce2vzNf/VTkxMVEffvih032lRkBAgHLnzu1wrYmkDHm+G722DRs26Lfffkv35ypTpozKlSunr776Sl999ZXy58/vEDSTkpJSTC0KDg5WgQIFdOnSpVv2/fLLL8vPz0+dOnXSv//+m2K7syMCzihevLjD1MgaNWpIkvr06aMFCxY4PKZMmSJJ6tChgxYsWJDir/hNmjSRn5+fPvzwQ/34449q1qzZDQPBjYwaNUqxsbHq0qWLrly5kmL70qVL7cuiN2jQQMeOHXOY2njlyhW9//778vf3V61atdL0s7iR0NBQrV+/XomJifa2RYsW6fDhww77Xb98tXR1Olh4eLiMMTddubFu3bry8vLSe++95/Bv/Pnnn+vs2bNq2LBhur2O/+rSpYtGjBiRYgn8693o/JKkSZMmpdg3W7ZsklL+QcRZly9fVocOHVSgQAG9++67mj59uv7991/169fvjvoFcOcYMQKQKt99953OnTunRo0a3XB7tWrVlCdPHkVGRjpcrH8jkydP1kMPPaRy5cqpa9euKl68uP7991/99ttvOnLkiLZt2+ZUbREREQoKClL79u3Vp08f2Ww2zZw5M0M/bHfp0kXjxo1Tly5dVKVKFa1atUp//fVXuj/Pk08+qfnz56tp06Zq2LChoqOj9fHHHys8PPyG1+zcqZYtW2r48OHy8fFR586dHUYrzp07p0KFCumZZ55RhQoV5O/vr19++UWbNm265YdPSSpZsqRmzZqlVq1aKSwsTG3atFGFChVkjFF0dLRmzZolNzc3FSpUKN1f081Urlw5xRLj16bUlS1bVk2aNElxjL+/v5o0aWK/zig10+iuadmypXbs2KHXX39dW7ZsUatWrVS0aFHFxsZqyZIlWrZsmb3fbt26acqUKerQoYP++OMPhYSEaO7cuVq7dq0mTZqU6kUcUqNLly6aO3eu6tevrxYtWmj//v368ssvUyzn/fjjjytfvnyqUaOG8ubNq927d+uDDz5Qw4YNb1pPnjx5NGTIEI0aNUr169dXo0aNFBUVpQ8//FAPPPDATe8blR6KFi3qcE+xGwkICFDNmjX11ltv6fLlyypYsKCWLl16w9Hma9e1vfrqq3r22Wfl6empp556yh6YUmvMmDHaunWrli1bpuzZs6t8+fIaPny4hg4dqmeeeUYNGjRwqj8A6YdgBCBVIiMj5ePjo8cee+yG293c3NSwYUNFRkam+Mvyf4WHh+v333/XqFGjNH36dMXGxio4OFiVKlVymM6SWrly5dKiRYv00ksvaejQoQoKClLbtm1Vp06dm17HdKeGDx+uEydOaO7cufr666/1xBNP6Mcff1RwcHC6Pk+HDh107NgxTZkyRT/99JPCw8P15Zdf6ptvvtGKFSvS9bmkqx/ehw4dqgsXLqQIuH5+furZs6eWLl2q+fPnKzk5WSVKlNCHH36o559//rZ9N27cWDt27NCECRO0dOlSTZ06VTabTUWLFlXDhg3Vo0cPVahQId1fU3pr06aNZs2apfz58zssTJEaY8aMUe3atfXee+/po48+0qlTpxQUFKRq1app4cKF9j88+Pr6asWKFRo8eLBmzJihuLg4hYWFadq0aTe8GeudqFevniZMmKCJEyfqxRdfVJUqVezn0/W6d++uyMhITZw4UfHx8SpUqJD69OmjoUOH3rL/kSNHKk+ePPrggw/Ur18/5cyZU926ddMbb7xx03tr3U2zZs3SCy+8oMmTJ8sYo8cff1w//vijChQo4LDfAw88oNdee00ff/yxlixZouTkZEVHRzsVjDZv3qw33nhDvXv3tq/sKV29wfDChQvVtWtX7dy5Uzly5EivlwfACTaTkX9SBQAAAIAsgGuMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFjePXmDV99KvV1dAuByvy0c6+oSAJcrXSC7q0sAALiYTyoTDyNGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACwv0wSj/fv3a+jQoWrVqpWOHz8uSfrxxx+1c+dOF1cGAAAA4F6XKYLRypUrVa5cOW3YsEHz589XfHy8JGnbtm0aMWKEi6sDAAAAcK/LFMFo8ODBGjNmjH7++Wd5eXnZ22vXrq3169e7sDIAAAAAVpApgtGOHTvUtGnTFO3BwcE6efKkCyoCAAAAYCWZIhjlyJFDMTExKdq3bNmiggULuqAiAAAAAFaSKYLRs88+q0GDBunYsWOy2WxKTk7W2rVrNWDAALVr187V5QEAAAC4x2WKYPTGG2+odOnSKly4sOLj4xUeHq6aNWsqIiJCQ4cOdXV5AAAAAO5xNmOMcXUR1xw+fFg7duxQfHy8KlWqpJIlS6apH99KvdO5MiDr+W3hWFeXALhc6QLZXV0CAMDFfDxSt1+mGDEaPXq0Lly4oMKFC6tBgwZq0aKFSpYsqYSEBI0ePdrV5QEAAAC4x2WKESN3d3fFxMQoODjYoT02NlbBwcFKSkpyqj9GjABGjACJESMAQBYbMTLGyGazpWjftm2bcubM6YKKAAAAAFhJKvNTxggKCpLNZpPNZlOpUqUcwlFSUpLi4+PVo0cPF1YIAAAAwApcGowmTZokY4w6deqkUaNGKTAw0L7Ny8tLISEhql69ugsrBAAAAGAFLg1G7du3lyQVK1ZMERER8vT0dGU5AAAAACzKpcHomlq1aikpKUnz5s3T7t27JUlly5ZVo0aN5O7u7uLqAAAAANzrMkUw2rdvnxo0aKCjR48qLCxMkjR27FgVLlxYixcvVmhoqIsrBAAAAHAvyxSr0vXp00ehoaE6fPiwNm/erM2bN+vQoUMqVqyY+vTp4+ryAAAAANzjMsWI0cqVK7V+/XqHpblz5cqlcePGqUaNGi6sDAAAAIAVZIpg5O3trXPnzqVoj4+Pl5eXlwsqwn91bf6Quj7zsIoWuBpedx84pjc++VFL1+6SJHl7eWhc/2ZqXu9+eXt56JffdqvvG1/p+Kn//bsWzhekd19pqVpVSik+4ZIiv9+gYe9/p6SkZJe8JiA9nDp5XJGfva+tG9fp0qWLylegkJ4fMEKhYeGSpA2rf9Uvi+bpwN49ij93Vm9+FKmQEmEurhrIeHNmRWrGtM918uQJlQorrcGvDFO58uVdXRZwV3EeZC2ZYirdk08+qW7dumnDhg0yxsgYo/Xr16tHjx5q1KiRq8uDpKP/ntGw9xcqos1bqtHmba3Y+Je+eaebyhTPJ0l6a8DTaljzPrV5+XM93mWS8ucJ1JwJXezHu7nZNP+95+Xl6aFHO0xQ1+Ez1bbRgxr+fENXvSTgjsWfi9PwFzvL3d1DQ954VxM/+1rPde+nbNkD7PtcupigsPsqqnWXF1xYKXB3LfnxB41/a6y69+ylOd8sUFhYaT3fvbNiY2NdXRpw13AeZD2ZIhi99957Cg0NVfXq1eXj4yMfHx/VqFFDJUqU0Lvvvuvq8iDph1V/6qc1u7T/0AntO3RcIyd/r/gLl1S1fDEF+PuoQ5PqGjRxvlZu+ktbdh9WtxFfqnrFUFUtFyJJqlu9jMoUz6dOr87Q9r+OaunaXRr94WJ1b1FTnh6sPIis6buvZihXnrzqOXCESpS+T8H5C6pClWrKV6CQfZ+ajzXUM891VbnKVV1YKXB3zZwxTc2eaaEmTZ9WaIkSGjpilHx8fPTt/HmuLg24azgPsp5MEYxy5MihhQsXKioqSnPnztXcuXMVFRWlBQsWONz0FZmDm5tNzevdr2y+XtqwPVqVyhSRl6eHfl0fZd/nr4P/6lDMKT1Yvpgk6cHyxfTnvn8cptb9vG63ArP7Kjw0/11/DUB6+P23VSpeqowmjh6krs0f06AerbXshwWuLgtwqcuJidq9a6eqVY+wt7m5ualatQht37bFhZUBdw/nQdaUKa4xWrNmjR566CGVLFlSJUuWdOrYS5cu6dKlSw5tJjlJNjdGIdJb2RIFtGLGS/Lx8lB8wiW1fOlT7TlwTBVKFdKlxMs6G5/gsP/x2DjlzXV1SlHeXAE6Hut4HdnxU3FXt+UOkKIEZDnHY47q5+/nqeHTbdS0dUftj9qlaZPHy8PDU7Uef9LV5QEucfrMaSUlJSlXrlwO7bly5VJ09AEXVQXcXZwHWVOmGDGqXbu2ihUrpldeeUW7du1y6tixY8cqMDDQ4XHl3z8yqFJr++vgv3rw2bGq2W68Pv1mjT4d/ZxK//81RoAVJZtkFStZWq0691KxEqVVt2Ez1WnQRD8vYpoEAABZTaYIRv/8849eeuklrVy5Uvfdd58qVqyot99+W0eOHLntsUOGDNHZs2cdHh55778LVVvP5StJOnD4pLbsPqzh73+nHX8dVa9Wj+hYbJy8vTwV6O/rsH9wrgD9G3t1VOjf2DgF58ruuD3n1dGkf0/G3Z0XAKSzoJy5VbBIMYe2gkWK6eTxYy6qCHC9oBxBcnd3T3GBeWxsrHLnzu2iqoC7i/Mga8oUwSh37tzq3bu31q5dq/3796t58+aaMWOGQkJCVLt27Vse6+3trYCAAIcH0+juDjebTd5eHtqy+5ASL1/Row/+bwnikkWDVSR/Tm3YHi1J2rA9WveVKKA8Qf72fepUK62z5xK0+wAfIpE1hZWtoJgjfzu0xRz5W3nyct0crMvTy0tlwstqw/rf7G3JycnasOE3la9QyYWVAXcP50HWlCmuMbpesWLFNHjwYFWoUEHDhg3TypUrXV0SJI1+oZF+WrtTh2NOK3s2H7V8oopqVimpp3p+qLj4i5r+7W9686VmOnX2vM6dv6iJg5pr/bYD2rjjoCTpl992a/eBY/p8THu9+u63ypsrQCN6PakpX69S4uUrrn1xQBo1eLq1hvftpAWzpqp6rce0L2qnlv2wQF1ffNW+T3zcWZ08fkynY09Ikv75/yCVI2cu5cjJXw1xb3qufUcNe2WQypa9T/eVK68vZ85QQkKCmjRt5urSgLuG8yDrsRljjKuLuGbt2rWKjIzU3LlzdfHiRTVu3Fht2rRR/fr1nerHt1LvDKrQuj4a0VqPVg1TvtwBOht/UX/uPaoJ037Rrxv2SPrfDV5b1P//G7yu262+Y7/Sv9ctuFAkf5DefeVZ1by/pM5fvKTI7zdq6HsLucFrBvlt4VhXl2AJf6xfrdmff6BjRw8rT74CevKZNqrToKl9+4qfvtdH40elOO6Z57qqebvud7NUSypdIPvtd0KGmB35pf3GlmGly2jQK0NVvnwFV5cF3FWcB5mDTyqHgjJFMBoyZIjmzJmjf/75R4899pjatGmjxo0by8/PL039EYwAghEgEYwAAKkPRpliKt2qVas0cOBAtWjRggvSAAAAANx1mSIYjR07VhEREfLwcCznypUrWrdunWrWrOmiygAAAABYQaZYle7RRx/VqVOnUrSfPXtWjz76qAsqAgAAAGAlmSIYGWNks9lStMfGxipbtmwuqAgAAACAlbh0Kl2zZleXK7TZbOrQoYO8vb3t25KSkrR9+3ZFRES4qjwAAAAAFuHSYBQYGCjp6ohR9uzZ5evra9/m5eWlatWqqWvXrq4qDwAAAIBFuCwY9e/fXx988IGyZcumgwcP6rPPPpO/v7+rygEAAABgYS67xuj9999XfHy8pKvLdV+4cMFVpQAAAACwOJeNGIWEhOi9997T448/LmOMfvvtNwUFBd1wX5brBgAAAJCRbMYY44on/vbbb9WjRw8dP35cNptNNyvDZrMpKSnJqb59K/VOjxKBLO23hWNdXQLgcqULZHd1CQAAF/NJ5VCQy0aMmjRpoiZNmig+Pl4BAQGKiopScHCwq8oBAAAAYGEuXZVOkvz9/bV8+XIVK1ZMHh4uLwcAAACABWWKG7zWqlVLf//9t4YOHapWrVrp+PHjkqQff/xRO3fudHF1AAAAAO51mSIYrVy5UuXKldOGDRs0f/58+2p127Zt04gRI1xcHQAAAIB7XaYIRoMHD9aYMWP0888/y8vLy95eu3ZtrV+/3oWVAQAAALCCTBGMduzYoaZNm6ZoDw4O1smTJ11QEQAAAAAryRTBKEeOHIqJiUnRvmXLFhUsWNAFFQEAAACwkkwRjJ599lkNGjRIx44dk81mU3JystauXasBAwaoXbt2ri4PAAAAwD0uUwSjN954Q6VLl1bhwoUVHx+v8PBwPfzww4qIiNDQoUNdXR4AAACAe5zNGGNcXcQ1hw8f1o4dOxQfH69KlSqpZMmSaerHt1LvdK4MyHp+WzjW1SUALle6QHZXlwAAcDGfVN4q1WV3VO3fv/8tt1+/Gt3EiRMzuhwAAAAAFuayYLRly5ZU7Wez2TK4EgAAAABW57JgtHz5clc9NQAAAAA4yBSLLwAAAACAKxGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFiezRhjXF1Eevt66z+uLgFwufZD57u6BMDlTn/b29UlAABczMcjdfsxYgQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8ghGAAAAACyPYAQAAADA8jJNMFq9erXatm2r6tWr6+jRo5KkmTNnas2aNS6uDAAAAMC9LlMEo3nz5qlevXry9fXVli1bdOnSJUnS2bNn9cYbb7i4OgAAAAD3ukwRjMaMGaOPP/5Yn376qTw9Pe3tNWrU0ObNm11YGQAAAAAryBTBKCoqSjVr1kzRHhgYqDNnztz9ggAAAABYSqYIRvny5dO+fftStK9Zs0bFixd3QUUAAAAArCRTBKOuXbuqb9++2rBhg2w2m/755x9FRkZqwIABev75511dHgAAAIB7nIerC5CkwYMHKzk5WXXq1NGFCxdUs2ZNeXt7a8CAAXrhhRdcXR4AAACAe5zNGGNcXcQ1iYmJ2rdvn+Lj4xUeHi5/f/809fP11n/SuTIg62k/dL6rSwBc7vS3vV1dAgDAxXxSORSUKabSderUSefOnZOXl5fCw8NVtWpV+fv76/z58+rUqZOrywMAAABwj8sUwWjGjBlKSEhI0Z6QkKAvvvjCBRUBAAAAsBKXXmMUFxcnY4yMMTp37px8fHzs25KSkvTDDz8oODjYhRUCAAAAsAKXBqMcOXLIZrPJZrOpVKlSKbbbbDaNGjXKBZUBAAAAsBKXBqPly5fLGKPatWtr3rx5ypkzp32bl5eXihYtqgIFCriwQgAAAABW4NJgVKtWLUlSdHS0ChcuLDe3THHJEwAAAACLyRT3MSpatKjOnDmjzz//XLt375YklS1bVp06dVJgYKCLqwMAAABwr8sUQzS///67QkND9c477+jUqVM6deqUJk6cqNDQUG3evNnV5QEAAAC4x2WKEaN+/fqpUaNG+vTTT+XhcbWkK1euqEuXLnrxxRe1atUqF1cIAAAA4F6WKYLR77//7hCKJMnDw0Mvv/yyqlSp4sLKAAAAAFhBpphKFxAQoEOHDqVoP3z4sLJnz+6CigAAAABYSaYIRi1btlTnzp311Vdf6fDhwzp8+LDmzJmjLl26qFWrVq4uDwAAAMA9LlNMpRs/frxsNpvatWunK1euSJI8PT31/PPPa9y4cS6uDgAAAMC9zmaMMa4u4poLFy5o//79kqTQ0FD5+fmlqZ+vt/6TnmUBWVL7ofNdXQLgcqe/7e3qEgAALuaTyqGgTDFi9OWXX6pZs2by8/NTuXLlXF0ObuLgrm1a8/1X+if6L507HatWA15T+AMP2bcbY/TrN9P0+7LFung+XkXC7lOjLv2UK38hSdLp48e0Yv4XOvDnFsWfOaXsOXOrwkN1VatZW3l4eLrqZQGpNqD5/WpSvbhKFQpSQuIVbdh9TK9OX6e9R8847Pdg6Xwa+Vw1PRCWV0nJRtsPnNBTw7/TxcQkSVLF0Dwa06G67i95dfu36/Zr0GdrdP7iZRe8KiBjzJkVqRnTPtfJkydUKqy0Br8yTOXKl3d1WcBdxXmQtWSKa4z69eun4OBgtW7dWj/88IOSkpJcXRJuIPHSReUrGqonO/W94fbV383R+h/nq1GXfur++ofy8vHRjDde1uXEREnSyX8OySQbNe7aXy9MmKYn2vXUpl++1y+zP7ubLwNIs4fvK6CPF+9QrQFz9eSwhfLwcNOi1xrJz/t/f2N6sHQ+LRz1lJZtOaSH+3+jh/p9rY8X7VBy8tXB+fw5s2nxmMbaH3NWNV/6Ro1HfKfwIjn1ab86rnpZQLpb8uMPGv/WWHXv2UtzvlmgsLDSer57Z8XGxrq6NOCu4TzIejJFMIqJidGcOXNks9nUokUL5c+fX7169dK6detcXRquU6rSg6r7bGeFV304xTZjjH77Ya5qNXtOZR54SPmKhurpXkN07vRJ7d60RpJUsmJVNes5SCUqPKCceQuoTJUaeujJFtq1cfXdfilAmjQe8b2+XLZHuw+d0o7oWHV75xcVCQ5QpRLB9n3e6vKQPvx+u8bP3azdh05p79EzmrdmnxKvJEuSnnggRJevJOvFj1Zq79Ez+mPvcb0weYWa1iih4vkDXfXSgHQ1c8Y0NXumhZo0fVqhJUpo6IhR8vHx0bfz57m6NOCu4TzIejJFMPLw8NCTTz6pyMhIHT9+XO+8844OHjyoRx99VKGhoa4uD6lw+niM4s+cUmi5++1tPn7+KlSijA7v3XnT4y5eOC9ff5ZkR9YUkM1bknQ6/qIkKU+gr6qWzqcTZxK0/O2ndXBmJy0d21QR4fntx3h7uuvylSRdf3VnQuLVRWeu3w/Iqi4nJmr3rp2qVj3C3ubm5qZq1SK0fdsWF1YG3D2cB1lTpghG1/Pz81O9evX0xBNPqGTJkjp48KCrS0IqxJ85JUnyDwxyaM8WGGTf9l+xx45q/ZIFeqDuUxleH5DebDbp7a4Pa93Of7Tr76vv8WL5AiRJr7auqqk/7VLjEd9p6/4T+uH1JgotcHU0aMX2I8ob5Kd+zSrJ08NNObJ5a0yH6pKkfDmzuebFAOno9JnTSkpKUq5cuRzac+XKpZMnT7qoKuDu4jzImjJNMLpw4YIiIyPVoEEDFSxYUJMmTVLTpk21c+fNRxsk6dKlS4qLi3N4XE68dJeqRlrFnTqhL954WfdVq6UqdZ50dTmA0yY9X0tli+ZUu7d+sre52WySpM+X/KmZv+zWtgMn9fJna/TXkdNq/1i4JGn3oVPq+s4y9WlaUafm9dDBLzvp4LE4HTt9XiY50ywSCgCA5WSKVemeffZZLVq0SH5+fmrRooWGDRum6tWrp+rYsWPHatSoUQ5tz3Tvr+Y9XsqIUnET/jlySpLiz55W9qD//XXk/NnTyhdSwmHfuFMnNXV0fxUuVVaNuvHvhKznnR411eCBENUdPF9HY8/b22NOX/169yHHUdKow6dVOI+//fuvVv6lr1b+peAcvjp/8YqMMerTpKKij529Oy8AyEBBOYLk7u6e4gLz2NhY5c6d20VVAXcX50HWlClGjNzd3fX1118rJiZGH3zwQapDkSQNGTJEZ8+edXg06cR9K+62oOD88s+RUwd2bLa3XbxwXkf27VbhkmXtbXGnTmjq6H4qUKyUmvUcJDe3TPEWBFLtnR411ah6cdV/9Vv9/e85h21//3tO/8TGq1QhxymlJQrm0KHjjvtK0vEzCTp/8bKeqVlSFy8nadnWwxlaO3A3eHp5qUx4WW1Y/5u9LTk5WRs2/KbyFSq5sDLg7uE8yJoyxYhRvXr1VKdOHbm7uzu0JyYmas6cOWrXrt1Nj/X29pa3t7dDm6dXfIbUaXWXLibo1LGj9u/PHI9RzMF98vXPrhy586p6g2e0YsFM5cxfUEHB+bXsq6nKHpRbZf7/Xkdxp07o81H9lCN3XtV/rofOx/3vr+PZ/3/ECcjMJj1fSy1rlVLzMYsVf+Gy8ua4ehPqsxcu2e9R9M68LRrapqp2RJ/UtgMn1bZOaYUVClLrsT/a++nxZDmt331M8QmXVadSYb3RMULDZvyms+cTXfK6gPT2XPuOGvbKIJUte5/uK1deX86coYSEBDVp2szVpQF3DedB1mMzxrh8Uru7u7tiYmIUHBzs0B4bG6vg4GCn72v09dZ/0rM8/L/onVs1dXS/FO2VatVTs56D/3eD118W6eKFeBUJK6enOr+o3AUKS5I2r1iiBR+9ecO+X/tqeYbWbkXth853dQn3nIRFNx6N7vrOL/py2R779wOeqazuDcspKLuPdkSf1KvT1mndrhj79s/611X9KiHy9/VU1JHTmjR/i2Yvj8rw+q3o9LfMIHCV2ZFf2m9sGVa6jAa9MlTly1dwdVnAXcV5kDn4pHIoKE3BaPXq1ZoyZYr279+vuXPnqmDBgpo5c6aKFSumhx56yNnu5Obmpn///Vd58uRxaN+2bZseffRRnTp141XNboZgBBCMAIlgBABIfTByeirdvHnz9Nxzz6lNmzbasmWLLl26ugLc2bNn9cYbb+iHH35IdV+VKlWSzWaTzWZTnTp15OHxv3KSkpIUHR2t+vXrO1siAAAAADjF6WA0ZswYffzxx2rXrp3mzJljb69Ro4bGjBnjVF9NmjSRJG3dulX16tWTv///Vm3y8vJSSEiInn76aWdLBAAAAACnOB2MoqKiVLNmzRTtgYGBOnPmjFN9jRgxQpIUEhKili1bysfHx9lyAAAAAOCOOR2M8uXLp3379ikkJMShfc2aNSpevHiaimjfvr2kq6vQHT9+XMnJyQ7bixQpkqZ+AQAAACA1nA5GXbt2Vd++fTV16lTZbDb9888/+u233zRgwAANGzYsTUXs3btXnTp10rp16xzajTGy2WxOr0oHAAAAAM5wOhgNHjxYycnJqlOnji5cuKCaNWvK29tbAwYM0AsvvJCmIjp06CAPDw8tWrRI+fPnl81mS1M/AAAAAJAWab6PUWJiovbt26f4+HiFh4c7LJzgrGzZsumPP/5Q6dKl09zH9ViuG2C5bkBiuW4AQOqX63ZztuNOnTrp3Llz8vLyUnh4uKpWrSp/f3+dP39enTp1crY7SVJ4eLhOnjyZpmMBAAAA4E45HYxmzJihhISEFO0JCQn64osvUt1PXFyc/fHmm2/q5Zdf1ooVKxQbG+uwLS4uztkSAQAAAMApqb7GKC4uTsYYGWN07tw5h6W1k5KS9MMPPyg4ODjVT5wjRw6Ha4mMMapTp47DPiy+AAAAAOBuSHUwuhZkbDabSpUqlWK7zWbTqFGjUv3Ey5cvT/W+AAAAAJCRUh2Mli9fLmOMateurXnz5ilnzpz2bV5eXipatKgKFCiQ6ieuVauWc5UCAAAAQAZJdTC6FmSio6NVuHBhubk5fXnSTW3fvv2G7TabTT4+PipSpIi8vb3T7fkAAAAA4HpO38eoaNGiOnPmjD7//HPt3r1bklS2bFl16tRJgYGBaSqiYsWKt7x3kaenp1q2bKkpU6Y4XNsEAAAAAOnB6WGf33//XaGhoXrnnXd06tQpnTp1ShMnTlRoaKg2b96cpiIWLFigkiVL6pNPPtHWrVu1detWffLJJwoLC9OsWbP0+eef69dff9XQoUPT1D8AAAAA3IrTN3h9+OGHVaJECX366afy8Lg64HTlyhV16dJFBw4c0KpVq5wuomrVqnrttddUr149h/affvpJw4YN08aNG/Xtt9/qpZde0v79+2/bHzd4BbjBKyBxg1cAQOpv8Or0VLrff//dIRRJkoeHh15++WVVqVLF2e4kSTt27FDRokVTtBctWlQ7duyQdHW6XUxMTJr6BwAAAIBbcXoqXUBAgA4dOpSi/fDhw8qePXuaiihdurTGjRunxMREe9vly5c1btw4lS5dWpJ09OhR5c2bN039AwAAAMCtOD1i1LJlS3Xu3Fnjx49XRESEJGnt2rUaOHCgWrVqlaYiJk+erEaNGqlQoUIqX768pKujSElJSVq0aJEk6cCBA+rZs2ea+gcAAACAW3E6GI0fP142m03t2rXTlStXJF1dNe7555/XuHHj0lRERESEoqOjFRkZqb/++kuS1Lx5c7Vu3do+CvXcc8+lqW8AAAAAuJ1UL75QpUoVdenSRa1bt1ZAQIAuXLhgXwghNDRUfn5+GVqoM1h8AWDxBUBi8QUAQAYsvlChQgW9/PLLeumll/T000+rU6dOeuSRR9JYnvTdd9/piSeekKenp7777rtb7tuoUaM0Pw8AAAAA3I5Ty3VfuHBBX3/9taZPn67Vq1erWLFi6tSpk9q3b6+CBQs69cRubm46duyYgoOD5eZ28zUgbDabkpKSnOqbESOAESNAYsQIAJD6ESOnVqXz8/NThw4dtGLFCv3111969tlnNWXKFIWEhKhhw4aaPz/1H8SSk5MVHBysy5cv65FHHtGePXuUnJyc4uFsKAIAAAAAZzm9XPc1oaGhGjNmjA4ePKjZs2dr/fr1at68udP9eHp6aseOHbccNQIAAACAjHRHaWTFihXq0KGDOnTooKSkJHXt2jVN/bRt21afffbZnZQCAAAAAGnm9HLdR44c0fTp0zV9+nQdOHBADz/8sD788EM1b95cvr6+aSriypUrmjp1qn755Rfdf//9ypYtm8P2iRMnpqlfAAAAAEiNVAejr7/+WlOnTtWyZcsUHBys9u3bq1OnTipRosQdF/Hnn3+qcuXKkmS/j9E1NpvtjvsHAAAAgFtJdTBq27atGjZsqAULFqhBgwbpek3Q8uXL060vAAAAAHBWqoPRkSNHFBwcnJG1AAAAAIBLpHrYh1AEAAAA4F7FGtkAAAAALI9gBAAAAMDyCEYAAAAALM/p+xhdk5iYqOPHjys5OdmhvUiRIndcFAAAAADcTU4Ho71796pTp05at26dQ7sxRjabTUlJSelWHAAAAADcDU4How4dOsjDw0OLFi1S/vz5uQErAAAAgCzP6WC0detW/fHHHypdunRG1AMAAAAAd53Tiy+Eh4fr5MmTGVELAAAAALiE08HozTff1Msvv6wVK1YoNjZWcXFxDg8AAAAAyGqcnkpXt25dSVKdOnUc2ll8AQAAAEBW5XQwWr58eUbUAQAAAAAu43QwqlWrVkbUAQAAAAAuk+YbvF64cEGHDh1SYmKiQ3v58uXvuCgAAAAAuJucDkYnTpxQx44d9eOPP95wO9cYAQAAAMhqnF6V7sUXX9SZM2e0YcMG+fr6asmSJZoxY4ZKliyp7777LiNqBAAAAIAM5fSI0a+//qqFCxeqSpUqcnNzU9GiRfXYY48pICBAY8eOVcOGDTOiTgAAAADIME6PGJ0/f17BwcGSpKCgIJ04cUKSVK5cOW3evDl9qwMAAACAu8DpYBQWFqaoqChJUoUKFTRlyhQdPXpUH3/8sfLnz5/uBQIAAABARnN6Kl3fvn0VExMjSRoxYoTq16+vyMhIeXl5afr06eldHwAAAABkOKeDUdu2be1f33///fr777+1Z88eFSlSRLlz507X4gAAAADgbkjzfYyu8fPzU+XKldOjFgAAAABwCaeDkTFGc+fO1fLly3X8+HElJyc7bJ8/f366FQcAAAAAd4PTwejFF1/UlClT9Oijjypv3ryy2WwZURcAAAAA3DVOB6OZM2dq/vz5atCgQUbUAwAAAAB3ndPLdQcGBqp48eIZUQsAAAAAuITTwWjkyJEaNWqUEhISMqIeAAAAALjrnJ5K16JFC82ePVvBwcEKCQmRp6enw/bNmzenW3EAAAAAcDc4HYzat2+vP/74Q23btmXxBQAAAAD3BKeD0eLFi/XTTz/poYceyoh6AAAAAOCuc/oao8KFCysgICAjagEAAAAAl3A6GE2YMEEvv/yyDh48mAHlAAAAAMDdZzPGGGcOCAoK0oULF3TlyhX5+fmlWHzh1KlT6VpgWly84uoKAAAAAGQGPqm8eMjpa4wmTZrk7CEAAAAAkKk5PWKUFTBiBAAAAEDKwBGjQ4cO3XJ7kSJFnO0SAAAAAFzK6REjNze3W967KCkp6Y6LulOMGAEAAACQMnDEaMuWLQ7fX758WVu2bNHEiRP1+uuvO9sdAAAAALhcul1jtHjxYr399ttasWJFenR3RxgxAgAAACClfsTI6fsY3UxYWJg2bdqUXt0BAAAAwF3j9FS6uLg4h++NMYqJidHIkSNVsmTJdCsMAAAAAO4Wp4NRjhw5Uiy+YIxR4cKFNWfOnHQrDAAAAADuFqeD0fLlyx2+d3NzU548eVSiRAl5eDjdHQAAAAC4HDd4BQAAAHDPSvflur/77rtU7deoUaPUdgkAAAAAmUKqR4zc3BwXsLPZbPrvoTabjRu8AgAAAMg00n257uTkZIeHn5+f9u3b59CWGUIRAAAAADgr3e5jBAAAAABZFcEIAAAAgOURjAAAAABYXpqDkc1mS3GjVwAAAADIilK9Kl1QUJBDEDpz5owCAgJSrFZ36tSp9K0wDViVDgAAAICUAfcxmjRpUhpLAQAAAIDMLdUjRlkJI0YAAAAApAy4jxEAAAAA3KsIRgAAAAAsj2AEAAAAwPIIRgAAAAAsj2AEAAAAwPJSvVz39Y4cOaLvvvtOhw4dUmJiosO2iRMnpkthAAAAAHC3OB2Mli1bpkaNGql48eLas2eP7rvvPh08eFDGGFWuXDkjagQAAACADOX0VLohQ4ZowIAB2rFjh3x8fDRv3jwdPnxYtWrVUvPmzTOiRgAAAADIUE7f4DV79uzaunWrQkNDFRQUpDVr1qhs2bLatm2bGjdurIMHD2ZQqanHDV4BAAAASBl4g9ds2bLZryvKnz+/9u/fb9928uRJZ7sDAAAAAJdz+hqjatWqac2aNSpTpowaNGigl156STt27ND8+fNVrVq1jKgRAAAAADKU01PpDhw4oPj4eJUvX17nz5/XSy+9pHXr1qlkyZKaOHGiihYtmlG1phpT6QAAAABIqZ9K53QwygoIRgAAAACk1AejNN3HSJISExN1/PhxJScnO7QXKVIkrV0CAAAAgEs4HYz++usvde7cWevWrXNoN8bIZrMpKSkp3YoDAAAAgLvB6WDUsWNHeXh4aNGiRcqfP79sNltG1AUAAAAAd43T1xhly5ZNf/zxh0qXLp1RNd0xrjECAAAAIGXgfYzCw8O5XxEAAACAe4rTwejNN9/Uyy+/rBUrVig2NlZxcXEODwAAAADIapyeSufmdjVL/ffaosy0+AJT6QAAAABIGbhc9/Lly509BAAAAAAyNW7wCgAAAOCelWGLL0jS6tWr1bZtW0VEROjo0aOSpJkzZ2rNmjVp6Q4AAAAAXMrpYDRv3jzVq1dPvr6+2rx5sy5duiRJOnv2rN544410LxAAAAAAMprTwWjMmDH6+OOP9emnn8rT09PeXqNGDW3evDldiwMAAACAu8HpYBQVFaWaNWumaA8MDNSZM2fSVMTMmTNVo0YNFShQQH///bckadKkSVq4cGGa+gMAAAAAZzgdjPLly6d9+/alaF+zZo2KFy/udAEfffSR+vfvrwYNGujMmTP25b5z5MihSZMmOd0fAAAAADjL6WDUtWtX9e3bVxs2bJDNZtM///yjyMhIDRgwQM8//7zTBbz//vv69NNP9eqrr8rd3d3eXqVKFe3YscPp/gAAAADAWU7fx2jw4MFKTk5WnTp1dOHCBdWsWVPe3t4aMGCAXnjhBacLiI6OVqVKlVK0e3t76/z58073BwAAAADOcioYJSUlae3aterVq5cGDhyoffv2KT4+XuHh4fL3909TAcWKFdPWrVtVtGhRh/YlS5aoTJkyaeoTAAAAAJzhVDByd3fX448/rt27dytHjhwKDw+/4wL69++vXr166eLFizLGaOPGjZo9e7bGjh2rzz777I77BwAAAIDbcXoq3X333acDBw6oWLFi6VJAly5d5Ovrq6FDh+rChQtq3bq1ChQooHfffVfPPvtsujwHAAAAANyKzRhjnDlgyZIlGjJkiF577TXdf//9ypYtm8P2gICANBdz4cIFxcfHKzg4OM19SNLFK3d0OAAAAIB7hE8qh4KcDkZubv9byM5ms9m/NsbIZrPZl9tOrdq1a2v+/PnKkSOHQ3tcXJyaNGmiX3/91an+JIIRAAAAgKtSG4ycnkq3fPlyZw+5pRUrVigxMTFF+8WLF7V69ep0fS4AAAAAuBGng1GtWrVuuu3PP/9MdT/bt2+3f71r1y4dO3bM/n1SUpKWLFmiggULOlseAAAAADjN6al0/3Xu3DnNnj1bn332mf74449UT6Vzc3OzT8W7UQm+vr56//331alTJ6drYiodAAAAACkDp9Jds2rVKn3++eeaN2+eChQooGbNmmny5MmpPj46OlrGGBUvXlwbN25Unjx57Nu8vLwUHBwsd3f3tJYHAAAAAKnmVDA6duyYpk+frs8//1xxcXFq0aKFLl26pG+//dbpexpdu6FrcnKyU8cBAAAAQHpzu/0uVz311FMKCwvT9u3bNWnSJP3zzz96//3306WI/fv364UXXlDdunVVt25d9enTR/v370+XvgEAAADgdlIdjH788Ud17txZo0aNUsOGDdNtmttPP/2k8PBwbdy4UeXLl1f58uW1YcMGlS1bVj///HO6PAfurjmzIvXEY7X1QKVyavNsc+24bqENwCo4D2B1nAMA50FWk+pgtGbNGp07d07333+/HnzwQX3wwQc6efLkHRcwePBg9evXTxs2bNDEiRM1ceJEbdiwQS+++KIGDRp0x/3j7lry4w8a/9ZYde/ZS3O+WaCwsNJ6vntnxcbGuro04K7hPIDVcQ4AnAdZkdOr0p0/f15fffWVpk6dqo0bNyopKUkTJ05Up06dlD17dqcL8PHx0Y4dO1SyZEmH9r/++kvly5fXxYsXne6TVelcp82zzVX2vnJ6ZehwSVevIXu8Ti21av2cOnft5uLqgLuD8wBWxzkAcB5kJqldlS7VI0bXZMuWTZ06ddKaNWu0Y8cOvfTSSxo3bpyCg4PVqFEjZ7tTnjx5tHXr1hTtW7duVXBwsNP9wXUuJyZq966dqlY9wt7m5uamatUitH3bFhdWBtw9nAewOs4BgPMgq3I6GF0vLCxMb731lo4cOaLZs2enqY+uXbuqW7duevPNN7V69WqtXr1a48aNU/fu3dW1a9fbHn/p0iXFxcU5PC5dupSmWnBnTp85raSkJOXKlcuhPVeuXOky7RLICjgPYHWcAwDnQVaV5vsYXc/d3V1NmjRRkyZNnD522LBhyp49uyZMmKAhQ4ZIkgoUKKCRI0eqT58+tz1+7NixGjVqlEPbq8NGaOjwkU7XAgAAAMCa0iUY3QmbzaZ+/fqpX79+OnfunCQ5da3SkCFD1L9/f4c24+6drjUidYJyBMnd3T3FRYWxsbHKnTu3i6oC7i7OA1gd5wDAeZBV3dFUuvQwZswYRUdHS7oaiJxdwMHb21sBAQEOD29vgpEreHp5qUx4WW1Y/5u9LTk5WRs2/KbyFSq5sDLg7uE8gNVxDgCcB1mVy4PRN998oxIlSigiIkIffvgh8y6zuOfad9T8uV/ru28X6MD+/RozeqQSEhLUpGkzV5cG3DWcB7A6zgGA8yArcnq57oywc+dORUZGas6cOTpy5Igee+wxtWnTRk2aNJGfn5/T/bFct2vNjvxSM6Z9rpMnTyisdBkNemWoypev4OqygLuK8wBWxzkAcB5kFqldrjtTBKPrrV27VrNmzdI333yjixcvKi4uzuk+CEYAAAAApAy8j1FGy5Ytm3x9feXl5aXLly+7uhwAAAAAFpApglF0dLRef/11lS1bVlWqVNGWLVs0atQoHTt2zNWlAQAAALAAly/XXa1aNW3atEnly5dXx44d1apVKxUsWNDVZQEAAACwEJcHozp16mjq1KkKDw93dSkAAAAALCrTLL6QmJio6OhohYaGysPjzvIaiy8AAAAAkLLQ4gsJCQnq3Lmz/Pz8VLZsWR06dEiS9MILL2jcuHEurg4AAACAFbg8GA0ePFjbtm3TihUr5OPjY2+vW7euvvrqKxdWBgAAAMAqXH6N0bfffquvvvpK1apVk81ms7eXLVtW+/fvd2FlAAAAAKzC5SNGJ06cUHBwcIr28+fPOwQlAAAAAMgoLg9GVapU0eLFi+3fXwtDn332mapXr+6qsgAAAABYiMun0r3xxht64okntGvXLl25ckXvvvuudu3apXXr1mnlypWuLg8AAACABbh8xOihhx7S1q1bdeXKFZUrV05Lly5VcHCwfvvtN91///2uLg8AAACABWSa+xilJ+5jBAAAAEBK/X2MXDKVLi4uTgEBAfavb+XafgAAAACQUVwyYuTu7q6YmBgFBwfLzc3thqvPGWNks9mUlJTkdP+MGAEAAACQMvmI0a+//qqcOXNKkqZNm6bChQvL3d3dYZ/k5GQdOnTIFeUBAAAAsBiXX2N0/ejR9WJjYxUcHMyIEQAAAIA0S+2IkctXpbs2Ze6/4uPj5ePj44KKAAAAAFiNy+5j1L9/f0lXb+g6bNgw+fn52bclJSVpw4YNqlixoouqAwAAAGAlLgtGW7ZskXR1xGjHjh3y8vKyb/Py8lKFChU0YMAAV5UHAAAAwEJcfo1Rx44d9e6776brstxcYwQAAABASv01Ri4PRhmBYAQAAABAykKLLwAAAACAqxGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5RGMAAAAAFgewQgAAACA5WW6YHTx4kVXlwAAAADAYjJFMEpOTtZrr72mggULyt/fXwcOHJAkDRs2TJ9//rmLqwMAAABwr8sUwWjMmDGaPn263nrrLXl5ednb77vvPn322WcurAwAAACAFWSKYPTFF1/ok08+UZs2beTu7m5vr1Chgvbs2ePCygAAAABYQaYIRkePHlWJEiVStCcnJ+vy5csuqAgAAACAlWSKYBQeHq7Vq1enaJ87d64qVarkgooAAAAAWImHqwuQpOHDh6t9+/Y6evSokpOTNX/+fEVFRemLL77QokWLXF0eAAAAgHuczRhjXF2EJK1evVqjR4/Wtm3bFB8fr8qVK2v48OF6/PHHne7r4pUMKBAAAABAluOTyqGgTBOM0hPBCAAAAICU+mCUKa4xKl68uGJjY1O0nzlzRsWLF3dBRQAAAACsJFMEo4MHDyopKSlF+6VLl3T06FEXVAQAAADASly6+MJ3331n//qnn35SYGCg/fukpCQtW7ZMISEhLqgMAAAAgJW49BojN7erA1Y2m03/LcPT01MhISGaMGGCnnzySaf65RojAAAAAFLqrzFy6YhRcnKyJKlYsWLatGmTcufO7cpyAAAAAFgUq9IBAAAAuGdlqVXpJGnlypV66qmnVKJECZUoUUKNGjXS6tWrXV0WAAAAAAvIFMHoyy+/VN26deXn56c+ffqoT58+8vX1VZ06dTRr1ixXlwcAAADgHpcpptKVKVNG3bp1U79+/RzaJ06cqE8//VS7d+92qj+m0gEAAACQUj+VLlMEI29vb+3cuVMlSpRwaN+3b5/uu+8+Xbx40an+CEYAAAAApCx2jVHhwoW1bNmyFO2//PKLChcu7IKKAAAAAFiJS5frvuall15Snz59tHXrVkVEREiS1q5dq+nTp+vdd991cXUAAAAA7nWZYiqdJC1YsEATJkywX09UpkwZDRw4UI0bN3a6L6bSAQAAAJCy2DVG6Y1gBAAAAEDKYtcYdenSRStWrHB1GQAAAAAsKlMEoxMnTqh+/foqXLiwBg4cqK1bt7q6JAAAAAAWkmmm0p0+fVrffPONZs2apdWrV6t06dJq06aNWrdurZCQEKf6YiodAAAAACmLX2N05MgRzZ49W1OnTtXevXt15YpzSYdgBAAAAEDKYtcYXe/y5cv6/ffftWHDBh08eFB58+Z1dUkAAAAA7nGZJhgtX75cXbt2Vd68edWhQwcFBARo0aJFOnLkiKtLAwAAAHCPyxRT6QoWLKhTp06pfv36atOmjZ566il5e3unuT+m0gEAAACQstg1Rp9++qmaN2+uHDly3HK/I0eOqECBAnJzu/VAF8EIAAAAgJTFglFqBQQEaOvWrSpevPgt9yMYAQAAAJCy8OILt5KFMhwAAACALCRLBSMAAAAAyAgEIwAAAACWRzACAAAAYHlZKhjZbDZXlwAAAADgHpSlghGLLwAAAADICFlque7Dhw+rQIECcnd3v+V+LNcNAAAAQMoC9zFq1qxZqvedP3++U30TjFxrzqxIzZj2uU6ePKFSYaU1+JVhKle+vKvLAu4qzgNYHecAwHmQWWT6+xgFBgbaHwEBAVq2bJl+//13+/Y//vhDy5YtU2BgoKtKRBos+fEHjX9rrLr37KU53yxQWFhpPd+9s2JjY11dGnDXcB7A6jgHAM6DrChTTKUbNGiQTp06pY8//tg+TS4pKUk9e/ZUQECA3n77baf6Y8TIddo821xl7yunV4YOlyQlJyfr8Tq11Kr1c+rctZuLqwPuDs4DWB3nAMB5kJlk+hGj602dOlUDBgxwuHbI3d1d/fv319SpU11YGZxxOTFRu3ftVLXqEfY2Nzc3VasWoe3btriwMuDu4TyA1XEOAJwHWVWmCEZXrlzRnj17UrTv2bNHycnJtzz20qVLiouLc3hcunQpo0rFLZw+c1pJSUnKlSuXQ3uuXLl08uRJF1UF3F2cB7A6zgGA8yCryhTBqGPHjurcubMmTpyoNWvWaM2aNZowYYK6dOmijh073vLYsWPHOlyvFBgYqLffHHuXKgcAAABwL0jljLuMNX78eOXLl08TJkxQTEyMJCl//vwaOHCgXnrppVseO2TIEPXv39+hzbh7Z1ituLmgHEFyd3dPcVFhbGyscufO7aKqgLuL8wBWxzkAcB5kVZlixMjNzU0vv/yyjh49qjNnzujMmTM6evSoXn755dves8jb21sBAQEOD29vgpEreHp5qUx4WW1Y/5u9LTk5WRs2/KbyFSq5sDLg7uE8gNVxDgCcB1lVphgxul5AQICrS8AdeK59Rw17ZZDKlr1P95Urry9nzlBCQoKaNE39fauArI7zAFbHOQBwHmRFmSYYzZ07V19//bUOHTqkxMREh22bN292UVVwVv0nGuj0qVP68IP3dPLkCYWVLqMPp3ymXAwbw0I4D2B1nAMA50FWlCnuY/Tee+/p1VdfVYcOHfTJJ5+oY8eO2r9/vzZt2qRevXrp9ddfd6o/7mMEAAAAQEr9fYwyRTAqXbq0RowYoVatWil79uzatm2bihcvruHDh+vUqVP64IMPnOqPYAQAAABAymI3eD106JAiIq7eAMvX11fnzp2TJD333HOaPXu2K0sDAAAAYAGZIhjly5dPp06dkiQVKVJE69evlyRFR0crEwxoAQAAALjHZYpgVLt2bX333XeSrt7stV+/fnrsscfUsmVLNW3a1MXVAQAAALjXZYprjJKTk5WcnCwPj6sTAOfMmaN169apZMmS6t69u7y8vJzqj2uMAAAAAEhZbPGF9EYwAgAAACClPhhlmvsYnT59Wp9//rl2794tSQoPD1fHjh2VM2dOF1cGAAAA4F6XKUaMVq1apUaNGikgIEBVqlSRJP3xxx86c+aMvv/+e9WsWdOp/hgxAgAAACBlsal05cqVU/Xq1fXRRx/J3d1dkpSUlKSePXtq3bp12rFjh1P9EYwAAAAASFksGPn6+mrr1q0KCwtzaI+KilLFihWVkJDgVH8EIwAAAABSFrvBa+XKle3XFl1v9+7dqlChggsqAgAAAGAlLlt8Yfv27fav+/Tpo759+2rfvn2qVq2aJGn9+vWaPHmyxo0b56oSAQAAAFiEy6bSubm5yWaz6XZPb7PZlJSU5FTfTKUDAAAAIGWB5bqjo6Nd9dQAAAAA4CBTLL6Q3hgxAgAAACBlgRGj/9q7d6+WL1+u48ePKzk52WHb8OHDXVQVAAAAACvIFCNGn376qZ5//nnlzp1b+fLlk81ms2+z2WzavHmzU/0xYgQAAABAymL3MSpatKh69uypQYMGpUt/BCMAAAAAUha7j9Hp06fVvHlzV5cBAAAAwKIyRTBq3ry5li5d6uoyAAAAAFiUy6bSvffee/avz58/r4kTJ6phw4YqV66cPD09Hfbt06ePU30zlQ4AAACAlAWuMSpWrFiq9rPZbDpw4IBTfROMAAAAAEhZIBhlJIIRAAAAACmLLb4wevRoXbhwIUV7QkKCRo8e7YKKAAAAAFhJphgxcnd3V0xMjIKDgx3aY2NjFRwcrKSkJKf6Y8QIAAAAgJTFRoyMMQ43db1m27ZtypkzpwsqAgAAAGAlqcxPGSMoKEg2m002m02lSpVyCEdJSUmKj49Xjx49XFghAAAAACtw6VS6GTNmyBijTp06adKkSQoMDLRv8/LyUkhIiKpXr+50v0ylAwAAACBlsVXpVq5cqYiIiBT3L0orghEAAAAAKYsFI+nq1Llvv/1Wu3fvliSVLVtWjRo1kru7u9N9EYwAAAAASFksGO3bt08NGjTQ0aNHFRYWJkmKiopS4cKFtXjxYoWGhjrVH8EIAAAAgJTFglGDBg1kjFFkZKR9FbrY2Fi1bdtWbm5uWrx4sVP9EYwAAAAASFksGGXLlk3r169XuXLlHNq3bdumGjVqKD4+3qn+CEYAAAAApCx2HyNvb2+dO3cuRXt8fLy8vLxcUBEAAAAAK8kUwejJJ59Ut27dtGHDBhljZIzR+vXr1aNHDzVq1MjV5QEAAAC4x2WKqXRnzpxR+/bt9f3339uX7L58+bIaN26s6dOnO9zfKDWYSgcAAABAymLXGF2zb98+7dq1S5IUHh6uEiVKpKkfghEAAAAAKfXBKJW7ZbzPP/9c77zzjvbu3StJKlmypF588UV16dLFxZUBAAAAuNdlimA0fPhwTZw4US+88IKqV68uSfrtt9/Ur18/HTp0SKNHj3ZxhQAAAADuZZliKl2ePHn03nvvqVWrVg7ts2fP1gsvvKCTJ0861R9T6QAAAABIWWy57suXL6tKlSop2u+//35duULKAQAAAJCxMkUweu655/TRRx+laP/kk0/Upk0bF1QEAAAAwEpcdo1R//797V/bbDZ99tlnWrp0qapVqyZJ2rBhgw4dOqR27dq5qkQAAAAAFuGya4weffTRVO1ns9n066+/OtU31xgBAAAAkLLofYzSC8EIAAAAgJTFFl8AAAAAAFciGAEAAACwPIIRAAAAAMsjGAEAAACwPIIRAAAAAMsjGAEAAACwPIIRAAAAAMsjGAEAAACwPIIRAAAAAMsjGAEAAACwPIIRAAAAAMsjGAEAAACwPIIRAAAAAMsjGAEAAACwPIIRAAAAAMsjGAEAAACwPIIRAAAAAMuzGWOMq4vAveXSpUsaO3ashgwZIm9vb1eXA7gE5wHAeQBInAdZCcEI6S4uLk6BgYE6e/asAgICXF0O4BKcBwDnASBxHmQlTKUDAAAAYHkEIwAAAACWRzACAAAAYHkEI6Q7b29vjRgxggsMYWmcBwDnASBxHmQlLL4AAAAAwPIYMQIAAABgeQQjAAAAAJZHMAIAAABgeQQjC3rkkUf04osvpnr/b7/9ViVKlJC7u7tTxwGZmc1m07fffpvq/VesWCGbzaYzZ85kWE1AZsH7HZmRs59fUiskJESTJk266faDBw/KZrNp69at6f7cHTp0UJMmTdK9X6QNwQi31b17dz3zzDM6fPiwXnvttQw7iadPn64cOXKke7/AjcTExOiJJ55I1z5HjhypihUrpmufEh9SkfH++4EzIiJCMTExCgwMvGs1ZOSHT0Dic4bk/B8FrcbD1QUgc4uPj9fx48dVr149FShQwNXlAOkiMTFR+fLlc3UZQKbl5eXFOQLAchgxsrhLly5pwIABKliwoLJly6YHH3xQK1askHT1r9TZs2eXJNWuXVs2m02PPPKIZsyYoYULF8pms8lms2nFihWKiIjQoEGDHPo+ceKEPD09tWrVKknS6dOn1a5dOwUFBcnPz09PPPGE9u7da3+ujh076uzZs/Z+R44cedsagdR45JFH1Lt3b7344ovKnTu36tWrl+KvZuvWrVPFihXl4+OjKlWq6Ntvv73hX6//+OMPValSRX5+foqIiFBUVJSkq3+JHDVqlLZt22Z/D0+fPl2tW7dWy5YtHfq4fPmycufOrS+++ELS1fd4nz59FBwcLB8fHz300EPatGmTpKt/RX/00UclSUFBQbLZbOrQoYMkKTk5WWPHjlWxYsXk6+urChUqaO7cuRnwE8S9rEOHDlq5cqXeffddh/fuf0cp16xZo4cffli+vr4qXLiw+vTpo/Pnz0uSXnnlFT344IMp+q5QoYJGjx4t6er7dfTo0SpUqJC8vb1VsWJFLVmyxL5vsWLFJEmVKlWy/39zzWeffaYyZcrIx8dHpUuX1ocffpgBPwlkBVeuXFHv3r0VGBio3Llza9iwYbp255m0fs6QpAsXLqhTp07Knj27ihQpok8++STFc+/Zs0cRERHy8fHRfffdp5UrV9q3JSUlqXPnzvbfx2FhYXr33Xcdjk9KSlL//v2VI0cO5cqVSy+//LJSe9ecTz75RAUKFFBycrJDe+PGjdWpUyf79x999JFCQ0Pl5eWlsLAwzZw5074tJCREktS0aVPZbDb795K0cOFCVa5cWT4+PipevLhGjRqlK1eupKq2e4qB5dSqVcv07dvXGGNMly5dTEREhFm1apXZt2+fefvtt423t7f566+/zKVLl0xUVJSRZObNm2diYmLM2bNnTYsWLUz9+vVNTEyMiYmJMZcuXTIffPCBKVKkiElOTrY/z/vvv+/Q1qhRI1OmTBmzatUqs3XrVlOvXj1TokQJk5iYaC5dumQmTZpkAgIC7P2eO3futjUCqVGrVi3j7+9vBg4caPbs2WP27NljJJkFCxYYY4w5e/asyZkzp2nbtq3ZuXOn+eGHH0ypUqWMJLNlyxZjjDHLly83ksyDDz5oVqxYYXbu3GkefvhhExERYYwx5sKFC+all14yZcuWtb+HL1y4YBYtWmR8fX3t72djjPn++++Nr6+viYuLM8YY06dPH1OgQAHzww8/mJ07d5r27duboKAgExsba65cuWLmzZtnJJmoqCgTExNjzpw5Y4wxZsyYMaZ06dJmyZIlZv/+/WbatGnG29vbrFix4u79cJHlnTlzxlSvXt107drV/t795ZdfjCRz+vRpY4wx+/btM9myZTPvvPOO+euvv8zatWtNpUqVTIcOHYwxxvz5559Gktm3b5+932tte/fuNcYYM3HiRBMQEGBmz55t9uzZY15++WXj6elp/12+ceNGI8n88ssvJiYmxsTGxhpjjPnyyy9N/vz5zbx588yBAwfMvHnzTM6cOc306dPv4k8JmcG13+V9+/Y1e/bsMV9++aXx8/Mzn3zyiTEm7Z8zihYtanLmzGkmT55s9u7da8aOHWvc3NzMnj17jDHGREdHG0mmUKFCZu7cuWbXrl2mS5cuJnv27ObkyZPGGGMSExPN8OHDzaZNm8yBAwfstX311Vf2+t98800TFBRk5s2bZ3bt2mU6d+5ssmfPbho3bnzb137q1Cnj5eVlfvnlF3tbbGysQ9v8+fONp6enmTx5somKijITJkww7u7u5tdffzXGGHP8+HEjyUybNs3ExMSY48ePG2OMWbVqlQkICDDTp083+/fvN0uXLjUhISFm5MiRd/gvlvUQjCzoWjD6+++/jbu7uzl69KjD9jp16pghQ4YYY4w5ffq0kWSWL19u396+ffsUJ/Hx48eNh4eHWbVqlb2tevXqZtCgQcYYY/766y8jyaxdu9a+/eTJk8bX19d8/fXXxhhjpk2bZgIDAx36TU2NwO3UqlXLVKpUyaHt+mD00UcfmVy5cpmEhAT79k8//fSGwej6/5QWL15sJNmPGzFihKlQoYLD81y+fNnkzp3bfPHFF/a2Vq1amZYtWxpjjImPjzeenp4mMjLSvj0xMdEUKFDAvPXWWw7Pfe1DqjHGXLx40fj5+Zl169Y5PF/nzp1Nq1atnPjpAI5/MDMm5Xuuc+fOplu3bg7HrF692ri5udnf/xUqVDCjR4+2bx8yZIh58MEH7d8XKFDAvP766w59PPDAA6Znz57GmP99+Lx2zl0TGhpqZs2a5dD22muvmerVq6fptSLrqlWrlilTpozDH2EHDRpkypQpk+bPGcZcDUZt27a1f5+cnGyCg4PNRx99ZIz533tz3Lhx9n0uX75sChUqZN58882b1turVy/z9NNP27/Pnz+//ff69X2kJhgZY0zjxo1Np06d7N9PmTLFFChQwCQlJRljjImIiDBdu3Z1OKZ58+amQYMG9u+v/7/vmjp16pg33njDoW3mzJkmf/78qarrXsJUOgvbsWOHkpKSVKpUKfn7+9sfK1eu1P79+53qK0+ePHr88ccVGRkpSYqOjtZvv/2mNm3aSJJ2794tDw8Ph6kWuXLlUlhYmHbv3n1XaoS13X///TfdFhUVpfLly8vHx8feVrVq1RvuW758efvX+fPnlyQdP378pn17eHioRYsW9nPj/PnzWrhwof3c2L9/vy5fvqwaNWrYj/H09FTVqlVveW7s27dPFy5c0GOPPeZwbnzxxRecG0h327Zt0/Tp0x3ea/Xq1VNycrKio6MlSW3atNGsWbMkScYYzZ492/4+j4uL0z///OPwPpekGjVq3PJ9fv78ee3fv1+dO3d2eO4xY8bwPreoatWqyWaz2b+vXr269u7dq127dqXpc8Y11/9ut9lsypcvX4rf7dWrV7d/7eHhoSpVqjj0PXnyZN1///3KkyeP/P399cknn+jQoUOSpLNnzyomJsahvmt9pFabNm00b948Xbp0SZIUGRmpZ599Vm5uVz/O79692+lzTLp6fo8ePdrhHOvatatiYmJ04cKFVNd3L2DxBQuLj4+Xu7u7/vjjD7m7uzts8/f3d7q/Nm3aqE+fPnr//fc1a9YslStXTuXKlctUNcK6smXLli79eHp62r++9p/zf+d8/1ebNm1Uq1YtHT9+XD///LN8fX1Vv379O6ojPj5ekrR48WIVLFjQYZu3t/cd9Q38V3x8vLp3764+ffqk2FakSBFJUqtWrTRo0CBt3rxZCQkJOnz4cIrr69LyvJL06aefpriG6b//JwB34vrf7dLV3++3+91+vTlz5mjAgAGaMGGCqlevruzZs+vtt9/Whg0b0q3Gp556SsYYLV68WA888IBWr16td9555477jY+P16hRo9SsWbMU267/g6EVEIwsrFKlSkpKStLx48f18MMPp/o4Ly8vJSUlpWhv3LixunXrpiVLlmjWrFlq166dfVuZMmV05coVbdiwQREREZKk2NhYRUVFKTw8/Kb9prVGwBlhYWH68ssvdenSJXuouLb4gTNudm5ERESocOHC+uqrr/Tjjz+qefPm9v+Er10ku3btWhUtWlTS1cUZNm3aZF8+2cvLS5Ic+g4PD5e3t7cOHTqkWrVqOV0rcL2bvXevqVy5snbt2qUSJUrcdJ9ChQqpVq1aioyMVEJCgh577DEFBwdLkgICAlSgQAGtXbvW4f26du1a++jsjd7nefPmVYECBXTgwAH76BOs7b9BY/369SpZsqTCw8PT9DnDGevXr1fNmjUlXV0E4o8//lDv3r0lXX0vR0REqGfPnvb9rx/VDAwMVP78+bVhw4YUfVSuXDlVz+/j46NmzZopMjJS+/btU1hYmMOxZcqU0dq1a9W+fXt729q1a+2vX7oaAP/7M6hcubKioqJueX5bBcHIwkqVKqU2bdqoXbt2mjBhgipVqqQTJ05o2bJlKl++vBo2bHjD40JCQvTTTz8pKipKuXLlUmBgoDw9PZUtWzY1adJEw4YN0+7du9WqVSv7MSVLllTjxo3VtWtXTZkyRdmzZ9fgwYNVsGBBNW7c2N5vfHy8li1bpgoVKsjPzy/NNQLOaN26tV599VV169ZNgwcP1qFDhzR+/HhJcpiycTshISGKjo7W1q1bVahQIWXPnt0etFq3bq2PP/5Yf/31l5YvX24/Jlu2bHr++ec1cOBA5cyZU0WKFNFbb72lCxcuqHPnzpKkokWLymazadGiRWrQoIF8fX2VPXt2DRgwQP369VNycrIeeughnT17VmvXrlVAQIDDf4zA7YSEhGjDhg06ePCg/P39U/ylfNCgQapWrZp69+6tLl26KFu2bNq1a5d+/vlnffDBB/b92rRpoxEjRigxMTHFX7IHDhyoESNGKDQ0VBUrVtS0adO0detW+zTT4OBg+fr6asmSJSpUqJB8fHwUGBioUaNGqU+fPgoMDFT9+vV16dIl/f777zp9+rT69++f8T8cZCqHDh1S//791b17d23evFnvv/++JkyYkObPGX5+fql+7smTJ6tkyZIqU6aM3nnnHZ0+fdq+IlzJkiX1xRdf6KefflKxYsU0c+ZMbdq0yb7aoiT17dtX48aNU8mSJVW6dGlNnDjR6fvTtWnTRk8++aR27typtm3bOmwbOHCgWrRooUqVKqlu3br6/vvvNX/+fP3yyy/2fUJCQrRs2TLVqFFD3t7eCgoK0vDhw/Xkk0+qSJEieuaZZ+Tm5qZt27bpzz//1JgxY5yqL8tz9UVOuPuuv8j22ioqISEhxtPT0+TPn980bdrUbN++3Rhz48UXjh8/bh577DHj7++fYtsPP/xgJJmaNWumeN5Tp06Z5557zgQGBhpfX19Tr169FCvL9ejRw+TKlctIMiNGjEhVjcDt/PfCcmNSXoC6du1aU758eePl5WXuv/9+M2vWLCPJvirRjRZA2LJli5FkoqOjjTFXF0R4+umnTY4cOewr/1yza9cuI8kULVrU4cJhY4xJSEgwL7zwgsmdO7fx9vY2NWrUMBs3bnTYZ/To0SZfvnzGZrOZ9u3bG2OuXiA8adIkExYWZjw9PU2ePHlMvXr1zMqVK+/o5wXriYqKMtWqVTO+vr729+5/3+8bN260/+7Pli2bKV++fIrFFE6fPm28vb2Nn5+fw0qMxhiTlJRkRo4caQoWLGg8PT1NhQoVzI8//uiwz6effmoKFy5s3NzcTK1ateztkZGRpmLFisbLy8sEBQWZmjVrmvnz56f7zwGZW61atUzPnj1Njx49TEBAgAkKCjKvvPKK/XdqWj9nFC1a1LzzzjsO+1WoUMG+/driC7NmzTJVq1Y1Xl5eJjw83L7amzFXf/936NDBBAYGmhw5cpjnn3/eDB482GFBnsuXL5u+ffuagIAAkyNHDtO/f3/Trl27VC++YMzV8yh//vxGktm/f3+K7R9++KEpXry48fT0NKVKlXJY+McYY7777jtTokQJ4+HhYYoWLWpvX7JkiYmIiDC+vr4mICDAVK1a1b7an5XYjEnlAuoAYCGRkZH2e174+vq6uhwAAJDBmEoHAJK++OILFS9eXAULFtS2bds0aNAgtWjRglAEAIBFEIwAQNKxY8c0fPhwHTt2TPnz51fz5s31+uuvu7osAIAFHDp0yGGRhP/atWuXfQVIZBym0gEAAAAudOXKFR08ePCm20NCQuThwXhGRiMYAQAAALA8N1cXAAAAAACuRjACAAAAYHkEIwAAAACWRzACAAAAYHkEIwAAAACWRzACAKTZsWPH1LdvX5UoUUI+Pj7KmzevatSooY8++kgXLlyw7xcSEiKbzSabzaZs2bKpcuXK+uabb1Jsu9GjQ4cOt6xh7dq18vDwUMWKFe1tTz31lOrXr3/D/VevXi2bzabt27en2FauXDn16NHjhsfNnDlT3t7eOnny5G1+KpLNZtO333572/0AAJkHwQgAkCYHDhxQpUqVtHTpUr3xxhvasmWLfvvtN7388statGiRfvnlF4f9R48erZiYGG3ZskUPPPCAWrZsqXXr1mnTpk2KiYlRTEyM5s2bJ0mKioqyt7377rs3reHMmTNq166d6tSp49DeuXNn/fzzzzpy5EiKY6ZNm6YqVaqofPnyKbZ17txZc+bMUUJCwg2Pa9SokXLnzp2qnw8AIGshGAEA0qRnz57y8PDQ77//rhYtWqhMmTIqXry4GjdurMWLF+upp55y2D979uzKly+fSpUqpcmTJ8vX11fff/+98uTJo3z58ilfvnzKmTOnJCk4ONjeFhgYeNMaevToodatW6t69eoO7U8++aTy5Mmj6dOnO7THx8frm2++UefOnW/YX9u2bZWQkGAPaNdER0drxYoV9uM++ugjhYaGysvLS2FhYZo5c6Z935CQEElS06ZNZbPZ7N9L0sKFC1W5cmX5+PioePHiGjVqlK5cuXLT1wcAuHsIRgAAp8XGxmrp0qXq1auXsmXLdsN9bDbbTY/38PCQp6enEhMT01zDtGnTdODAAY0YMeKG/bdr107Tp0/X9fcx/+abb5SUlKRWrVrdsM/cuXOrcePGmjp1qkP79OnTVahQIT3++ONasGCB+vbtq5deekl//vmnunfvro4dO2r58uWSpE2bNtnri4mJsX+/evVqtWvXTn379tWuXbs0ZcoUTZ8+Xa+//nqafwYAgPRDMAIAOG3fvn0yxigsLMyhPXfu3PL395e/v78GDRp0w2MTExM1duxYnT17VrVr107T8+/du1eDBw/Wl19+KQ8Pjxvu06lTJ+3fv18rV660t02bNk1PP/30LUehOnfurBUrVig6OlqSZIzRjBkz1L59e7m5uWn8+PHq0KGDevbsqVKlSql///5q1qyZxo8fL0nKkyePJClHjhzKly+f/ftRo0Zp8ODBat++vYoXL67HHntMr732mqZMmZKmnwEAIH0RjAAA6Wbjxo3aunWrypYtq0uXLjlsGzRokPz9/eXn56c333xT48aNU8OGDW/b57Wg5e/vrx49eigpKUmtW7fWqFGjVKpUqZseV7p0aUVERNhHf/bt26fVq1ffdBrdNY899pgKFSqkadOmSZKWLVumQ4cOqWPHjpKk3bt3q0aNGg7H1KhRQ7t3775lv9u2bdPo0aMdXk/Xrl0VExPjsFAFAMA1bvxnNgAAbqFEiRKy2WyKiopyaC9evLgkydfXN8UxAwcOVIcOHeTv76+8efPecqrd9bZu3Wr/OiAgQOfOndPvv/+uLVu2qHfv3pKk5ORkGWPk4eGhpUuX2keiOnfurBdeeEGTJ0/WtGnTFBoaqlq1at3y+dzc3NShQwfNmDFDI0eO1LRp0/Too4/aX1taxcfHa9SoUWrWrFmKbT4+PnfUNwDgzjFiBABwWq5cufTYY4/pgw8+0Pnz51N1TO7cuVWiRAnly5cv1aFIuhrCrj2Cg4MVEBCgHTt2aOvWrfZHjx49FBYWpq1bt+rBBx+0H9uiRQu5ublp1qxZ+uKLL9SpU6dUPXfHjh11+PBhzZ8/XwsWLHAYZSpTpozWrl3rsP/atWsVHh5u/97T01NJSUkO+1SuXFlRUVEOr+faw82N/44BwNUYMQIApMmHH36oGjVqqEqVKho5cqTKly8vNzc3bdq0SXv27NH999+fIc/r5uam++67z6EtODhYPj4+Kdr9/f3VsmVLDRkyRHFxcbe9J9I1xYoVU+3atdWtWzd5e3s7jPIMHDhQLVq0UKVKlVS3bl19//33mj9/vsPy5CEhIVq2bJlq1Kghb29vBQUFafjw4XryySdVpEgRPfPMM3Jzc9O2bdv0559/asyYMWn/gQAA0gV/ogIApEloaKi2bNmiunXrasiQIapQoYKqVKmi999/XwMGDNBrr73m6hIlXZ1Od/r0adWrV08FChRw+rjWrVs7THVr0qSJ3n33XY0fP15ly5bVlClTNG3aND3yyCP2fSZMmKCff/5ZhQsXVqVKlSRJ9erV06JFi7R06VI98MADqlatmt555x0VLVo03V4rACDtbOb6dUwBAAAAwIIYMQIAAABgeQQjAAAAAJZHMAIAAABgeQQjAAAAAJZHMAIAAABgeQQjAAAAAJZHMAIAAABgeQQjAAAAAJZHMAIAAABgeQQjAAAAAJZHMAIAAABgef8HWA2Jk61Jt7wAAAAASUVORK5CYII=",
|
112 |
-
"text/plain": [
|
113 |
-
"<Figure size 1000x700 with 1 Axes>"
|
114 |
-
]
|
115 |
-
},
|
116 |
-
"metadata": {},
|
117 |
-
"output_type": "display_data"
|
118 |
-
}
|
119 |
-
],
|
120 |
-
"source": [
|
121 |
-
"import seaborn as sns\n",
|
122 |
-
"import matplotlib.pyplot as plt\n",
|
123 |
-
"from sklearn.metrics import confusion_matrix\n",
|
124 |
-
"import pandas as pd\n",
|
125 |
-
"\n",
|
126 |
-
"# Assuming df is your DataFrame\n",
|
127 |
-
"\n",
|
128 |
-
"# True labels and predictions\n",
|
129 |
-
"y_true = filtered_df[\"type\"]\n",
|
130 |
-
"y_pred = filtered_df[\"gpt_vote\"]\n",
|
131 |
-
"\n",
|
132 |
-
"# Compute the confusion matrix\n",
|
133 |
-
"conf_matrix = confusion_matrix(y_true, y_pred, labels=[\"leftvote\", \"rightvote\", \"tievote\", \"bothbad_vote\"])\n",
|
134 |
-
"\n",
|
135 |
-
"# Create a pandas DataFrame from the confusion matrix\n",
|
136 |
-
"conf_matrix_df = pd.DataFrame(conf_matrix, index=[\"leftvote\", \"rightvote\", \"tievote\", \"bothbad_vote\"], columns=[\"leftvote\", \"rightvote\", \"tievote\", \"bothbad_vote\"])\n",
|
137 |
-
"\n",
|
138 |
-
"# Plotting the heatmap\n",
|
139 |
-
"plt.figure(figsize=(10, 7))\n",
|
140 |
-
"sns.heatmap(conf_matrix_df, annot=True, fmt=\"d\", cmap=\"Blues\", cbar=False)\n",
|
141 |
-
"plt.title(\"Arena Human vs GPT-4V Confusion Matrix\")\n",
|
142 |
-
"plt.xlabel(\"GPT-4V Vote\")\n",
|
143 |
-
"plt.ylabel(\"Arena Human Vote\")\n",
|
144 |
-
"plt.show()\n"
|
145 |
-
]
|
146 |
-
},
|
147 |
-
{
|
148 |
-
"cell_type": "code",
|
149 |
-
"execution_count": 46,
|
150 |
-
"metadata": {},
|
151 |
-
"outputs": [
|
152 |
-
{
|
153 |
-
"name": "stdout",
|
154 |
-
"output_type": "stream",
|
155 |
-
"text": [
|
156 |
-
"Accuracy: 0.5842911877394636\n",
|
157 |
-
"F1 Score (Macro): 0.514392348541452\n",
|
158 |
-
"F1 Score (Micro): 0.5842911877394636\n",
|
159 |
-
"F1 Score (Weighted): 0.5536668839130223\n"
|
160 |
-
]
|
161 |
-
}
|
162 |
-
],
|
163 |
-
"source": [
|
164 |
-
"from sklearn.metrics import accuracy_score, f1_score\n",
|
165 |
-
"\n",
|
166 |
-
"# Assuming df is your DataFrame and it contains 'type' as true labels and 'gpt_vote' as predictions\n",
|
167 |
-
"y_true = filtered_df['type']\n",
|
168 |
-
"y_pred = filtered_df['gpt_vote']\n",
|
169 |
-
"\n",
|
170 |
-
"# Calculate accuracy\n",
|
171 |
-
"accuracy = accuracy_score(y_true, y_pred)\n",
|
172 |
-
"print(f'Accuracy: {accuracy}')\n",
|
173 |
-
"\n",
|
174 |
-
"# Calculate F1 score, here using 'macro' average to treat all classes equally\n",
|
175 |
-
"f1 = f1_score(y_true, y_pred, average='macro')\n",
|
176 |
-
"print(f'F1 Score (Macro): {f1}')\n",
|
177 |
-
"\n",
|
178 |
-
"# If you want to calculate F1 score with other averages, for example 'micro' or 'weighted', you can do:\n",
|
179 |
-
"f1_micro = f1_score(y_true, y_pred, average='micro')\n",
|
180 |
-
"print(f'F1 Score (Micro): {f1_micro}')\n",
|
181 |
-
"\n",
|
182 |
-
"f1_weighted = f1_score(y_true, y_pred, average='weighted')\n",
|
183 |
-
"print(f'F1 Score (Weighted): {f1_weighted}')"
|
184 |
-
]
|
185 |
-
},
|
186 |
-
{
|
187 |
-
"cell_type": "code",
|
188 |
-
"execution_count": null,
|
189 |
-
"metadata": {},
|
190 |
-
"outputs": [],
|
191 |
-
"source": []
|
192 |
-
},
|
193 |
-
{
|
194 |
-
"cell_type": "code",
|
195 |
-
"execution_count": 47,
|
196 |
-
"metadata": {},
|
197 |
-
"outputs": [
|
198 |
-
{
|
199 |
-
"name": "stdout",
|
200 |
-
"output_type": "stream",
|
201 |
-
"text": [
|
202 |
-
"Cohen's Kappa Score: 0.3442144615665177\n"
|
203 |
-
]
|
204 |
-
}
|
205 |
-
],
|
206 |
-
"source": [
|
207 |
-
"from sklearn.metrics import cohen_kappa_score\n",
|
208 |
-
"\n",
|
209 |
-
"# Assuming df is your DataFrame and it contains 'type' as true labels and 'gpt_vote' as predictions\n",
|
210 |
-
"y_true = filtered_df['type']\n",
|
211 |
-
"y_pred = filtered_df['gpt_vote']\n",
|
212 |
-
"\n",
|
213 |
-
"# Calculate Cohen's Kappa score\n",
|
214 |
-
"kappa = cohen_kappa_score(y_true, y_pred)\n",
|
215 |
-
"print(f'Cohen\\'s Kappa Score: {kappa}')\n"
|
216 |
-
]
|
217 |
-
},
|
218 |
-
{
|
219 |
-
"cell_type": "code",
|
220 |
-
"execution_count": 48,
|
221 |
-
"metadata": {},
|
222 |
-
"outputs": [
|
223 |
-
{
|
224 |
-
"name": "stdout",
|
225 |
-
"output_type": "stream",
|
226 |
-
"text": [
|
227 |
-
"Accuracy Score: 0.5842911877394636\n"
|
228 |
-
]
|
229 |
-
}
|
230 |
-
],
|
231 |
-
"source": [
|
232 |
-
"from sklearn.metrics import accuracy_score\n",
|
233 |
-
"accuracy = accuracy_score(y_true, y_pred)\n",
|
234 |
-
"print(f'Accuracy Score: {accuracy}')\n"
|
235 |
-
]
|
236 |
-
},
|
237 |
-
{
|
238 |
-
"cell_type": "code",
|
239 |
-
"execution_count": 49,
|
240 |
-
"metadata": {},
|
241 |
-
"outputs": [
|
242 |
-
{
|
243 |
-
"name": "stdout",
|
244 |
-
"output_type": "stream",
|
245 |
-
"text": [
|
246 |
-
"Pearson Correlation Coefficient: 0.2880096104357029\n"
|
247 |
-
]
|
248 |
-
}
|
249 |
-
],
|
250 |
-
"source": [
|
251 |
-
"import pandas as pd\n",
|
252 |
-
"\n",
|
253 |
-
"# Assuming filtered_df is your DataFrame and it contains 'type' and 'gpt_vote' columns\n",
|
254 |
-
"# Convert 'type' and 'gpt_vote' to categorical codes\n",
|
255 |
-
"filtered_df['type_int'] = pd.factorize(filtered_df['type'])[0]\n",
|
256 |
-
"filtered_df['gpt_vote_int'] = pd.factorize(filtered_df['gpt_vote'])[0]\n",
|
257 |
-
"\n",
|
258 |
-
"# Now you can calculate Pearson correlation between these new integer columns\n",
|
259 |
-
"pearson_correlation = filtered_df['type_int'].corr(filtered_df['gpt_vote_int'])\n",
|
260 |
-
"print(f'Pearson Correlation Coefficient: {pearson_correlation}')\n"
|
261 |
-
]
|
262 |
-
},
|
263 |
-
{
|
264 |
-
"cell_type": "code",
|
265 |
-
"execution_count": null,
|
266 |
-
"metadata": {},
|
267 |
-
"outputs": [],
|
268 |
-
"source": []
|
269 |
-
},
|
270 |
-
{
|
271 |
-
"cell_type": "code",
|
272 |
-
"execution_count": null,
|
273 |
-
"metadata": {},
|
274 |
-
"outputs": [],
|
275 |
-
"source": []
|
276 |
-
},
|
277 |
-
{
|
278 |
-
"cell_type": "code",
|
279 |
-
"execution_count": null,
|
280 |
-
"metadata": {},
|
281 |
-
"outputs": [],
|
282 |
-
"source": []
|
283 |
-
},
|
284 |
-
{
|
285 |
-
"cell_type": "code",
|
286 |
-
"execution_count": null,
|
287 |
-
"metadata": {},
|
288 |
-
"outputs": [],
|
289 |
-
"source": []
|
290 |
-
},
|
291 |
-
{
|
292 |
-
"cell_type": "code",
|
293 |
-
"execution_count": null,
|
294 |
-
"metadata": {},
|
295 |
-
"outputs": [],
|
296 |
-
"source": []
|
297 |
-
}
|
298 |
-
],
|
299 |
-
"metadata": {
|
300 |
-
"kernelspec": {
|
301 |
-
"display_name": "otask",
|
302 |
-
"language": "python",
|
303 |
-
"name": "python3"
|
304 |
-
},
|
305 |
-
"language_info": {
|
306 |
-
"codemirror_mode": {
|
307 |
-
"name": "ipython",
|
308 |
-
"version": 3
|
309 |
-
},
|
310 |
-
"file_extension": ".py",
|
311 |
-
"mimetype": "text/x-python",
|
312 |
-
"name": "python",
|
313 |
-
"nbconvert_exporter": "python",
|
314 |
-
"pygments_lexer": "ipython3",
|
315 |
-
"version": "3.10.13"
|
316 |
-
},
|
317 |
-
"orig_nbformat": 4
|
318 |
-
},
|
319 |
-
"nbformat": 4,
|
320 |
-
"nbformat_minor": 2
|
321 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/get_latest_data.sh
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
|
2 |
-
# set LOGDIR to default if not set before
|
3 |
-
if [ -z "$LOGDIR" ]; then
|
4 |
-
export LOGDIR="./vision-arena-logs"
|
5 |
-
fi
|
6 |
-
mkdir -p results
|
7 |
-
|
8 |
-
|
9 |
-
# # for battle data
|
10 |
-
python -m elo_rating.clean_battle_data --model_infos_file "./model_infos.json" --mode conv_release
|
11 |
-
battle_cutoff_date=`cat cut_off_date.txt` && rm cut_off_date.txt && echo "Battle data last updated on $battle_cutoff_date"
|
12 |
-
|
13 |
-
mkdir -p ./results/latest
|
14 |
-
mkdir -p ./results/$battle_cutoff_date && mv ./clean_battle_conv_$battle_cutoff_date.json ./results/$battle_cutoff_date/clean_battle_conv.json
|
15 |
-
cp ./results/$battle_cutoff_date/clean_battle_conv.json ./results/latest/clean_battle_conv.json
|
16 |
-
|
17 |
-
echo "Battle data last updated on $battle_cutoff_date" >> ./results/latest/latest_updated_date.txt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/pyproject.toml
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
[build-system]
|
2 |
-
requires = ["setuptools>=61.0"]
|
3 |
-
build-backend = "setuptools.build_meta"
|
4 |
-
|
5 |
-
[project]
|
6 |
-
name = "arena_elo"
|
7 |
-
version = "0.2.35"
|
8 |
-
description = "Elo rating system for WildVision Bench Arena"
|
9 |
-
readme = "README.md"
|
10 |
-
requires-python = ">=3.9"
|
11 |
-
classifiers = [
|
12 |
-
"Programming Language :: Python :: 3",
|
13 |
-
"License :: OSI Approved :: Apache Software License",
|
14 |
-
]
|
15 |
-
dependencies = [
|
16 |
-
"numpy", "prompt_toolkit>=3.0.0", "uvicorn","polyglot", "pyicu", "pycld2", "morfessor", "scikit-learn",
|
17 |
-
"pytz", "tqdm", "pandas", "plotly", "fire", "Pillow"
|
18 |
-
]
|
19 |
-
|
20 |
-
[project.urls]
|
21 |
-
"Homepage" = "https://github.com/WildVision-Bench/Arena-Elo"
|
22 |
-
"Bug Tracker" = "https://github.com/WildVision-Bench/Arena-Elo/issues"
|
23 |
-
|
24 |
-
[tool.setuptools.packages.find]
|
25 |
-
exclude = ["assets*", "benchmark*", "docs", "dist*", "playground*", "scripts*", "tests*"]
|
26 |
-
|
27 |
-
[tool.wheel]
|
28 |
-
exclude = ["assets*", "benchmark*", "docs", "dist*", "playground*", "scripts*", "tests*"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/requirements.txt
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
-e git+https://github.com/WildVision-Bench/Arena-Elo.git@9dc2fa8543a2e9eda3d5bc01c2212fdfcdd4bfb5#egg=arena_elo
|
2 |
-
click==8.1.7
|
3 |
-
fire==0.5.0
|
4 |
-
h11==0.14.0
|
5 |
-
joblib==1.3.2
|
6 |
-
Morfessor==2.0.6
|
7 |
-
numpy==1.26.4
|
8 |
-
packaging==23.2
|
9 |
-
pandas==2.2.0
|
10 |
-
pillow==10.2.0
|
11 |
-
plotly==5.18.0
|
12 |
-
polyglot==16.7.4
|
13 |
-
prompt-toolkit==3.0.43
|
14 |
-
pycld2==0.41
|
15 |
-
PyICU==2.12
|
16 |
-
python-dateutil==2.8.2
|
17 |
-
pytz==2024.1
|
18 |
-
scikit-learn==1.4.0
|
19 |
-
scipy==1.12.0
|
20 |
-
six==1.16.0
|
21 |
-
tenacity==8.2.3
|
22 |
-
termcolor==2.4.0
|
23 |
-
threadpoolctl==3.2.0
|
24 |
-
tqdm==4.66.2
|
25 |
-
typing_extensions==4.9.0
|
26 |
-
tzdata==2024.1
|
27 |
-
uvicorn==0.27.1
|
28 |
-
wcwidth==0.2.13
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/results/20240220/elo_results_image_editing.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f41023a65a4dc1831a482dfa6098ccd528af9de297a1ea518881d49ce2885f0e
|
3 |
-
size 57121
|
|
|
|
|
|
|
|
arena_elo/results/20240220/elo_results_t2i_generation.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f383f3920ef3834f6e6ec213691a955992b4ce49ccaf7658c0b35ff72a2219d3
|
3 |
-
size 54505
|
|
|
|
|
|
|
|
arena_elo/results/20240220/image_editing_leaderboard.csv
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
key,Model,Arena Elo rating (anony),Arena Elo rating (full),License,Organization,Link
|
2 |
-
Prompt2prompt,Prompt2prompt,1252.820838097007,1216.6489026518666,Apache-2.0,"Google, Tel Aviv University",https://prompt-to-prompt.github.io
|
3 |
-
PNP,PNP,1175.6261555831445,1171.3279007979363,-,Weizmann Institute of Science,https://github.com/MichalGeyer/plug-and-play
|
4 |
-
InstructPix2Pix,InstructPix2Pix,1155.8431458813104,1142.6827834982837,"Copyright 2023 Timothy Brooks, Aleksander Holynski, Alexei A. Efros","University of California, Berkeley",https://www.timothybrooks.com/instruct-pix2pix
|
5 |
-
MagicBrush,MagicBrush,1051.428411953954,1089.4499296239383,CC-BY-4.0,"The Ohio State University, University of Waterloo",https://osu-nlp-group.github.io/MagicBrush
|
6 |
-
Pix2PixZero,Pix2PixZero,955.5903260059122,929.2296611307636,MIT License,"Carnegie Mellon University, Adobe Research",https://pix2pixzero.github.io
|
7 |
-
CycleDiffusion,CycleDiffusion,771.4360186105207,753.4930725653142,X11,Carnegie Mellon University,https://github.com/ChenWu98/cycle-diffusion
|
8 |
-
SDEdit,SDEdit,637.2551038681513,697.1677497318974,MIT License,Stanford University,https://sde-image-editing.github.io
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/results/20240220/t2i_generation_leaderboard.csv
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
key,Model,Arena Elo rating (anony),Arena Elo rating (full),License,Organization,Link
|
2 |
-
PlayGroundV2,PlayGroundV2,1151.1834096302248,1150.901721636401,Playground v2 Community License,Playground,https://huggingface.co/playgroundai/playground-v2-1024px-aesthetic
|
3 |
-
PixArtAlpha,PixArtAlpha,1078.3583466674136,1069.815012597113,openrail++,PixArt-alpha,https://huggingface.co/PixArt-alpha/PixArt-XL-2-1024-MS
|
4 |
-
SDXL,SDXL,1027.258044463298,1035.47732509915,openrail++,Stability AI,https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
|
5 |
-
SDXLTurbo,SDXLTurbo,972.0904914158416,969.4933207298967,sai-nc-community (other),Stability AI,https://huggingface.co/stabilityai/sdxl-turbo
|
6 |
-
OpenJourney,OpenJourney,921.3424873878607,906.3184453708288,creativeml-openrail-m,PromptHero,https://huggingface.co/prompthero/openjourney
|
7 |
-
LCM,LCM,849.7672204353615,868.2154196730218,MIT License,Tsinghua University,https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/results/20240315/clean_battle_image_editing.json
DELETED
@@ -1,794 +0,0 @@
|
|
1 |
-
[
|
2 |
-
{
|
3 |
-
"model_a": "CycleDiffusion",
|
4 |
-
"model_b": "InstructPix2Pix",
|
5 |
-
"winner": "model_b",
|
6 |
-
"judge": "arena_user_::1",
|
7 |
-
"anony": true,
|
8 |
-
"tstamp": 1707712630.872
|
9 |
-
},
|
10 |
-
{
|
11 |
-
"model_a": "CycleDiffusion",
|
12 |
-
"model_b": "InstructPix2Pix",
|
13 |
-
"winner": "model_b",
|
14 |
-
"judge": "arena_user_::1",
|
15 |
-
"anony": false,
|
16 |
-
"tstamp": 1707712699.668
|
17 |
-
},
|
18 |
-
{
|
19 |
-
"model_a": "Pix2PixZero",
|
20 |
-
"model_b": "MagicBrush",
|
21 |
-
"winner": "model_a",
|
22 |
-
"judge": "arena_user_::1",
|
23 |
-
"anony": true,
|
24 |
-
"tstamp": 1707712896.0427
|
25 |
-
},
|
26 |
-
{
|
27 |
-
"model_a": "CycleDiffusion",
|
28 |
-
"model_b": "InstructPix2Pix",
|
29 |
-
"winner": "model_b",
|
30 |
-
"judge": "arena_user_::1",
|
31 |
-
"anony": false,
|
32 |
-
"tstamp": 1707712929.7061
|
33 |
-
},
|
34 |
-
{
|
35 |
-
"model_a": "CycleDiffusion",
|
36 |
-
"model_b": "InstructPix2Pix",
|
37 |
-
"winner": "model_b",
|
38 |
-
"judge": "arena_user_::1",
|
39 |
-
"anony": true,
|
40 |
-
"tstamp": 1707713147.0445
|
41 |
-
},
|
42 |
-
{
|
43 |
-
"model_a": "CycleDiffusion",
|
44 |
-
"model_b": "PNP",
|
45 |
-
"winner": "model_b",
|
46 |
-
"judge": "arena_user_::1",
|
47 |
-
"anony": true,
|
48 |
-
"tstamp": 1707713198.9284
|
49 |
-
},
|
50 |
-
{
|
51 |
-
"model_a": "CycleDiffusion",
|
52 |
-
"model_b": "Prompt2prompt",
|
53 |
-
"winner": "model_b",
|
54 |
-
"judge": "arena_user_::1",
|
55 |
-
"anony": true,
|
56 |
-
"tstamp": 1707713210.1306
|
57 |
-
},
|
58 |
-
{
|
59 |
-
"model_a": "Prompt2prompt",
|
60 |
-
"model_b": "SDEdit",
|
61 |
-
"winner": "model_a",
|
62 |
-
"judge": "arena_user_::1",
|
63 |
-
"anony": true,
|
64 |
-
"tstamp": 1707713747.5115
|
65 |
-
},
|
66 |
-
{
|
67 |
-
"model_a": "PNP",
|
68 |
-
"model_b": "Pix2PixZero",
|
69 |
-
"winner": "model_a",
|
70 |
-
"judge": "arena_user_::1",
|
71 |
-
"anony": true,
|
72 |
-
"tstamp": 1707715613.7226
|
73 |
-
},
|
74 |
-
{
|
75 |
-
"model_a": "CycleDiffusion",
|
76 |
-
"model_b": "MagicBrush",
|
77 |
-
"winner": "model_b",
|
78 |
-
"judge": "arena_user_::1",
|
79 |
-
"anony": true,
|
80 |
-
"tstamp": 1707765708.2644
|
81 |
-
},
|
82 |
-
{
|
83 |
-
"model_a": "PNP",
|
84 |
-
"model_b": "CycleDiffusion",
|
85 |
-
"winner": "model_a",
|
86 |
-
"judge": "arena_user_::1",
|
87 |
-
"anony": true,
|
88 |
-
"tstamp": 1707765861.2742
|
89 |
-
},
|
90 |
-
{
|
91 |
-
"model_a": "PNP",
|
92 |
-
"model_b": "CycleDiffusion",
|
93 |
-
"winner": "model_a",
|
94 |
-
"judge": "arena_user_::1",
|
95 |
-
"anony": false,
|
96 |
-
"tstamp": 1707765975.0206
|
97 |
-
},
|
98 |
-
{
|
99 |
-
"model_a": "PNP",
|
100 |
-
"model_b": "CycleDiffusion",
|
101 |
-
"winner": "model_a",
|
102 |
-
"judge": "arena_user_::1",
|
103 |
-
"anony": true,
|
104 |
-
"tstamp": 1707768866.9065
|
105 |
-
},
|
106 |
-
{
|
107 |
-
"model_a": "SDEdit",
|
108 |
-
"model_b": "MagicBrush",
|
109 |
-
"winner": "model_b",
|
110 |
-
"judge": "arena_user_::1",
|
111 |
-
"anony": true,
|
112 |
-
"tstamp": 1707771673.2989
|
113 |
-
},
|
114 |
-
{
|
115 |
-
"model_a": "SDEdit",
|
116 |
-
"model_b": "MagicBrush",
|
117 |
-
"winner": "model_b",
|
118 |
-
"judge": "arena_user_::1",
|
119 |
-
"anony": true,
|
120 |
-
"tstamp": 1707784377.6617
|
121 |
-
},
|
122 |
-
{
|
123 |
-
"model_a": "SDEdit",
|
124 |
-
"model_b": "MagicBrush",
|
125 |
-
"winner": "model_b",
|
126 |
-
"judge": "arena_user_::1",
|
127 |
-
"anony": true,
|
128 |
-
"tstamp": 1707784466.8915
|
129 |
-
},
|
130 |
-
{
|
131 |
-
"model_a": "CycleDiffusion",
|
132 |
-
"model_b": "PNP",
|
133 |
-
"winner": "model_b",
|
134 |
-
"judge": "arena_user_::1",
|
135 |
-
"anony": true,
|
136 |
-
"tstamp": 1707784983.9581
|
137 |
-
},
|
138 |
-
{
|
139 |
-
"model_a": "MagicBrush",
|
140 |
-
"model_b": "SDEdit",
|
141 |
-
"winner": "model_a",
|
142 |
-
"judge": "arena_user_::1",
|
143 |
-
"anony": true,
|
144 |
-
"tstamp": 1707785277.16
|
145 |
-
},
|
146 |
-
{
|
147 |
-
"model_a": "MagicBrush",
|
148 |
-
"model_b": "SDEdit",
|
149 |
-
"winner": "model_a",
|
150 |
-
"judge": "arena_user_::1",
|
151 |
-
"anony": true,
|
152 |
-
"tstamp": 1707795299.0619
|
153 |
-
},
|
154 |
-
{
|
155 |
-
"model_a": "MagicBrush",
|
156 |
-
"model_b": "SDEdit",
|
157 |
-
"winner": "tie (bothbad)",
|
158 |
-
"judge": "arena_user_::1",
|
159 |
-
"anony": true,
|
160 |
-
"tstamp": 1707795798.752
|
161 |
-
},
|
162 |
-
{
|
163 |
-
"model_a": "SDEdit",
|
164 |
-
"model_b": "Prompt2prompt",
|
165 |
-
"winner": "model_b",
|
166 |
-
"judge": "arena_user_::1",
|
167 |
-
"anony": false,
|
168 |
-
"tstamp": 1707796435.7996
|
169 |
-
},
|
170 |
-
{
|
171 |
-
"model_a": "SDEdit",
|
172 |
-
"model_b": "CycleDiffusion",
|
173 |
-
"winner": "model_b",
|
174 |
-
"judge": "arena_user_::1",
|
175 |
-
"anony": false,
|
176 |
-
"tstamp": 1707797278.7369
|
177 |
-
},
|
178 |
-
{
|
179 |
-
"model_a": "SDEdit",
|
180 |
-
"model_b": "CycleDiffusion",
|
181 |
-
"winner": "model_a",
|
182 |
-
"judge": "arena_user_::1",
|
183 |
-
"anony": false,
|
184 |
-
"tstamp": 1707797279.6004
|
185 |
-
},
|
186 |
-
{
|
187 |
-
"model_a": "SDEdit",
|
188 |
-
"model_b": "Prompt2prompt",
|
189 |
-
"winner": "model_b",
|
190 |
-
"judge": "arena_user_::1",
|
191 |
-
"anony": true,
|
192 |
-
"tstamp": 1707805086.9739
|
193 |
-
},
|
194 |
-
{
|
195 |
-
"model_a": "PNP",
|
196 |
-
"model_b": "SDEdit",
|
197 |
-
"winner": "model_a",
|
198 |
-
"judge": "arena_user_::1",
|
199 |
-
"anony": true,
|
200 |
-
"tstamp": 1707805220.3253
|
201 |
-
},
|
202 |
-
{
|
203 |
-
"model_a": "InstructPix2Pix",
|
204 |
-
"model_b": "CycleDiffusion",
|
205 |
-
"winner": "tie (bothbad)",
|
206 |
-
"judge": "arena_user_::1",
|
207 |
-
"anony": true,
|
208 |
-
"tstamp": 1707805332.6322
|
209 |
-
},
|
210 |
-
{
|
211 |
-
"model_a": "InstructPix2Pix",
|
212 |
-
"model_b": "Prompt2prompt",
|
213 |
-
"winner": "model_b",
|
214 |
-
"judge": "arena_user_::1",
|
215 |
-
"anony": true,
|
216 |
-
"tstamp": 1707805476.0509
|
217 |
-
},
|
218 |
-
{
|
219 |
-
"model_a": "InstructPix2Pix",
|
220 |
-
"model_b": "Prompt2prompt",
|
221 |
-
"winner": "model_b",
|
222 |
-
"judge": "arena_user_::1",
|
223 |
-
"anony": true,
|
224 |
-
"tstamp": 1707818374.3438
|
225 |
-
},
|
226 |
-
{
|
227 |
-
"model_a": "PNP",
|
228 |
-
"model_b": "Prompt2prompt",
|
229 |
-
"winner": "model_b",
|
230 |
-
"judge": "arena_user_::1",
|
231 |
-
"anony": true,
|
232 |
-
"tstamp": 1707834631.9088
|
233 |
-
},
|
234 |
-
{
|
235 |
-
"model_a": "InstructPix2Pix",
|
236 |
-
"model_b": "SDEdit",
|
237 |
-
"winner": "model_a",
|
238 |
-
"judge": "arena_user_::1",
|
239 |
-
"anony": true,
|
240 |
-
"tstamp": 1707834954.0147
|
241 |
-
},
|
242 |
-
{
|
243 |
-
"model_a": "Prompt2prompt",
|
244 |
-
"model_b": "Pix2PixZero",
|
245 |
-
"winner": "tie (bothbad)",
|
246 |
-
"judge": "arena_user_::1",
|
247 |
-
"anony": true,
|
248 |
-
"tstamp": 1707835366.544
|
249 |
-
},
|
250 |
-
{
|
251 |
-
"model_a": "PNP",
|
252 |
-
"model_b": "SDEdit",
|
253 |
-
"winner": "model_a",
|
254 |
-
"judge": "arena_user_::1",
|
255 |
-
"anony": true,
|
256 |
-
"tstamp": 1707835643.6178
|
257 |
-
},
|
258 |
-
{
|
259 |
-
"model_a": "MagicBrush",
|
260 |
-
"model_b": "InstructPix2Pix",
|
261 |
-
"winner": "tie (bothbad)",
|
262 |
-
"judge": "arena_user_::1",
|
263 |
-
"anony": true,
|
264 |
-
"tstamp": 1707835789.25
|
265 |
-
},
|
266 |
-
{
|
267 |
-
"model_a": "MagicBrush",
|
268 |
-
"model_b": "PNP",
|
269 |
-
"winner": "tie (bothbad)",
|
270 |
-
"judge": "arena_user_::1",
|
271 |
-
"anony": true,
|
272 |
-
"tstamp": 1707836852.671
|
273 |
-
},
|
274 |
-
{
|
275 |
-
"model_a": "MagicBrush",
|
276 |
-
"model_b": "InstructPix2Pix",
|
277 |
-
"winner": "model_a",
|
278 |
-
"judge": "arena_user_::1",
|
279 |
-
"anony": false,
|
280 |
-
"tstamp": 1707836952.6082
|
281 |
-
},
|
282 |
-
{
|
283 |
-
"model_a": "CycleDiffusion",
|
284 |
-
"model_b": "SDEdit",
|
285 |
-
"winner": "tie (bothbad)",
|
286 |
-
"judge": "arena_user_::1",
|
287 |
-
"anony": false,
|
288 |
-
"tstamp": 1707837020.7148
|
289 |
-
},
|
290 |
-
{
|
291 |
-
"model_a": "InstructPix2Pix",
|
292 |
-
"model_b": "PNP",
|
293 |
-
"winner": "model_a",
|
294 |
-
"judge": "arena_user_::1",
|
295 |
-
"anony": true,
|
296 |
-
"tstamp": 1707837226.2259
|
297 |
-
},
|
298 |
-
{
|
299 |
-
"model_a": "Prompt2prompt",
|
300 |
-
"model_b": "Pix2PixZero",
|
301 |
-
"winner": "model_a",
|
302 |
-
"judge": "arena_user_::1",
|
303 |
-
"anony": true,
|
304 |
-
"tstamp": 1707838166.1449
|
305 |
-
},
|
306 |
-
{
|
307 |
-
"model_a": "InstructPix2Pix",
|
308 |
-
"model_b": "MagicBrush",
|
309 |
-
"winner": "tie (bothbad)",
|
310 |
-
"judge": "arena_user_::1",
|
311 |
-
"anony": true,
|
312 |
-
"tstamp": 1707838405.0013
|
313 |
-
},
|
314 |
-
{
|
315 |
-
"model_a": "MagicBrush",
|
316 |
-
"model_b": "CycleDiffusion",
|
317 |
-
"winner": "model_a",
|
318 |
-
"judge": "arena_user_::1",
|
319 |
-
"anony": true,
|
320 |
-
"tstamp": 1707839133.3126
|
321 |
-
},
|
322 |
-
{
|
323 |
-
"model_a": "Prompt2prompt",
|
324 |
-
"model_b": "InstructPix2Pix",
|
325 |
-
"winner": "model_a",
|
326 |
-
"judge": "arena_user_::1",
|
327 |
-
"anony": true,
|
328 |
-
"tstamp": 1707839484.6824
|
329 |
-
},
|
330 |
-
{
|
331 |
-
"model_a": "PNP",
|
332 |
-
"model_b": "InstructPix2Pix",
|
333 |
-
"winner": "tie (bothbad)",
|
334 |
-
"judge": "arena_user_::1",
|
335 |
-
"anony": true,
|
336 |
-
"tstamp": 1707850104.2499
|
337 |
-
},
|
338 |
-
{
|
339 |
-
"model_a": "InstructPix2Pix",
|
340 |
-
"model_b": "Pix2PixZero",
|
341 |
-
"winner": "model_a",
|
342 |
-
"judge": "arena_user_::1",
|
343 |
-
"anony": true,
|
344 |
-
"tstamp": 1707851384.7689
|
345 |
-
},
|
346 |
-
{
|
347 |
-
"model_a": "PNP",
|
348 |
-
"model_b": "MagicBrush",
|
349 |
-
"winner": "model_b",
|
350 |
-
"judge": "arena_user_::1",
|
351 |
-
"anony": true,
|
352 |
-
"tstamp": 1707851936.9466
|
353 |
-
},
|
354 |
-
{
|
355 |
-
"model_a": "CycleDiffusion",
|
356 |
-
"model_b": "MagicBrush",
|
357 |
-
"winner": "tie (bothbad)",
|
358 |
-
"judge": "arena_user_::1",
|
359 |
-
"anony": true,
|
360 |
-
"tstamp": 1707852836.3291
|
361 |
-
},
|
362 |
-
{
|
363 |
-
"model_a": "CycleDiffusion",
|
364 |
-
"model_b": "MagicBrush",
|
365 |
-
"winner": "tie (bothbad)",
|
366 |
-
"judge": "arena_user_::1",
|
367 |
-
"anony": false,
|
368 |
-
"tstamp": 1707852878.673
|
369 |
-
},
|
370 |
-
{
|
371 |
-
"model_a": "Prompt2prompt",
|
372 |
-
"model_b": "InstructPix2Pix",
|
373 |
-
"winner": "model_a",
|
374 |
-
"judge": "arena_user_::1",
|
375 |
-
"anony": true,
|
376 |
-
"tstamp": 1707853008.1359
|
377 |
-
},
|
378 |
-
{
|
379 |
-
"model_a": "InstructPix2Pix",
|
380 |
-
"model_b": "Pix2PixZero",
|
381 |
-
"winner": "model_a",
|
382 |
-
"judge": "arena_user_::1",
|
383 |
-
"anony": false,
|
384 |
-
"tstamp": 1707856807.6229
|
385 |
-
},
|
386 |
-
{
|
387 |
-
"model_a": "MagicBrush",
|
388 |
-
"model_b": "Pix2PixZero",
|
389 |
-
"winner": "tie (bothbad)",
|
390 |
-
"judge": "arena_user_::1",
|
391 |
-
"anony": false,
|
392 |
-
"tstamp": 1707863740.3507
|
393 |
-
},
|
394 |
-
{
|
395 |
-
"model_a": "MagicBrush",
|
396 |
-
"model_b": "PNP",
|
397 |
-
"winner": "model_b",
|
398 |
-
"judge": "arena_user_::1",
|
399 |
-
"anony": true,
|
400 |
-
"tstamp": 1707866312.1118
|
401 |
-
},
|
402 |
-
{
|
403 |
-
"model_a": "Pix2PixZero",
|
404 |
-
"model_b": "Prompt2prompt",
|
405 |
-
"winner": "model_b",
|
406 |
-
"judge": "arena_user_::1",
|
407 |
-
"anony": true,
|
408 |
-
"tstamp": 1707883083.3533
|
409 |
-
},
|
410 |
-
{
|
411 |
-
"model_a": "Pix2PixZero",
|
412 |
-
"model_b": "InstructPix2Pix",
|
413 |
-
"winner": "model_b",
|
414 |
-
"judge": "arena_user_::1",
|
415 |
-
"anony": true,
|
416 |
-
"tstamp": 1707883181.1397
|
417 |
-
},
|
418 |
-
{
|
419 |
-
"model_a": "Pix2PixZero",
|
420 |
-
"model_b": "Prompt2prompt",
|
421 |
-
"winner": "model_b",
|
422 |
-
"judge": "arena_user_::1",
|
423 |
-
"anony": true,
|
424 |
-
"tstamp": 1707883187.9173
|
425 |
-
},
|
426 |
-
{
|
427 |
-
"model_a": "PNP",
|
428 |
-
"model_b": "Prompt2prompt",
|
429 |
-
"winner": "model_a",
|
430 |
-
"judge": "arena_user_::1",
|
431 |
-
"anony": true,
|
432 |
-
"tstamp": 1707883507.587
|
433 |
-
},
|
434 |
-
{
|
435 |
-
"model_a": "Prompt2prompt",
|
436 |
-
"model_b": "CycleDiffusion",
|
437 |
-
"winner": "model_a",
|
438 |
-
"judge": "arena_user_::1",
|
439 |
-
"anony": true,
|
440 |
-
"tstamp": 1707883939.6125
|
441 |
-
},
|
442 |
-
{
|
443 |
-
"model_a": "Prompt2prompt",
|
444 |
-
"model_b": "MagicBrush",
|
445 |
-
"winner": "model_b",
|
446 |
-
"judge": "arena_user_::1",
|
447 |
-
"anony": true,
|
448 |
-
"tstamp": 1707892689.4407
|
449 |
-
},
|
450 |
-
{
|
451 |
-
"model_a": "MagicBrush",
|
452 |
-
"model_b": "InstructPix2Pix",
|
453 |
-
"winner": "model_b",
|
454 |
-
"judge": "arena_user_::1",
|
455 |
-
"anony": true,
|
456 |
-
"tstamp": 1707908988.749
|
457 |
-
},
|
458 |
-
{
|
459 |
-
"model_a": "Prompt2prompt",
|
460 |
-
"model_b": "InstructPix2Pix",
|
461 |
-
"winner": "model_a",
|
462 |
-
"judge": "arena_user_::1",
|
463 |
-
"anony": true,
|
464 |
-
"tstamp": 1707912639.2701
|
465 |
-
},
|
466 |
-
{
|
467 |
-
"model_a": "MagicBrush",
|
468 |
-
"model_b": "Pix2PixZero",
|
469 |
-
"winner": "model_a",
|
470 |
-
"judge": "arena_user_::1",
|
471 |
-
"anony": false,
|
472 |
-
"tstamp": 1707917685.9574
|
473 |
-
},
|
474 |
-
{
|
475 |
-
"model_a": "MagicBrush",
|
476 |
-
"model_b": "InstructPix2Pix",
|
477 |
-
"winner": "tie (bothbad)",
|
478 |
-
"judge": "arena_user_::1",
|
479 |
-
"anony": false,
|
480 |
-
"tstamp": 1707919429.336
|
481 |
-
},
|
482 |
-
{
|
483 |
-
"model_a": "InstructPix2Pix",
|
484 |
-
"model_b": "CycleDiffusion",
|
485 |
-
"winner": "model_a",
|
486 |
-
"judge": "arena_user_::1",
|
487 |
-
"anony": true,
|
488 |
-
"tstamp": 1707932651.9192
|
489 |
-
},
|
490 |
-
{
|
491 |
-
"model_a": "MagicBrush",
|
492 |
-
"model_b": "InstructPix2Pix",
|
493 |
-
"winner": "model_a",
|
494 |
-
"judge": "arena_user_::1",
|
495 |
-
"anony": true,
|
496 |
-
"tstamp": 1707932749.3107
|
497 |
-
},
|
498 |
-
{
|
499 |
-
"model_a": "Prompt2prompt",
|
500 |
-
"model_b": "PNP",
|
501 |
-
"winner": "model_a",
|
502 |
-
"judge": "arena_user_::1",
|
503 |
-
"anony": true,
|
504 |
-
"tstamp": 1707933208.5797
|
505 |
-
},
|
506 |
-
{
|
507 |
-
"model_a": "MagicBrush",
|
508 |
-
"model_b": "Pix2PixZero",
|
509 |
-
"winner": "model_a",
|
510 |
-
"judge": "arena_user_::1",
|
511 |
-
"anony": false,
|
512 |
-
"tstamp": 1707945335.6341
|
513 |
-
},
|
514 |
-
{
|
515 |
-
"model_a": "MagicBrush",
|
516 |
-
"model_b": "PNP",
|
517 |
-
"winner": "model_a",
|
518 |
-
"judge": "arena_user_::1",
|
519 |
-
"anony": false,
|
520 |
-
"tstamp": 1708031168.6838
|
521 |
-
},
|
522 |
-
{
|
523 |
-
"model_a": "Pix2PixZero",
|
524 |
-
"model_b": "PNP",
|
525 |
-
"winner": "model_b",
|
526 |
-
"judge": "arena_user_::1",
|
527 |
-
"anony": false,
|
528 |
-
"tstamp": 1708038931.5388
|
529 |
-
},
|
530 |
-
{
|
531 |
-
"model_a": "Pix2PixZero",
|
532 |
-
"model_b": "CycleDiffusion",
|
533 |
-
"winner": "tie (bothbad)",
|
534 |
-
"judge": "arena_user_::1",
|
535 |
-
"anony": true,
|
536 |
-
"tstamp": 1708057382.78
|
537 |
-
},
|
538 |
-
{
|
539 |
-
"model_a": "PNP",
|
540 |
-
"model_b": "InstructPix2Pix",
|
541 |
-
"winner": "model_b",
|
542 |
-
"judge": "arena_user_::1",
|
543 |
-
"anony": true,
|
544 |
-
"tstamp": 1708093689.8237
|
545 |
-
},
|
546 |
-
{
|
547 |
-
"model_a": "MagicBrush",
|
548 |
-
"model_b": "PNP",
|
549 |
-
"winner": "model_b",
|
550 |
-
"judge": "arena_user_::1",
|
551 |
-
"anony": true,
|
552 |
-
"tstamp": 1708093910.4683
|
553 |
-
},
|
554 |
-
{
|
555 |
-
"model_a": "Pix2PixZero",
|
556 |
-
"model_b": "Prompt2prompt",
|
557 |
-
"winner": "model_b",
|
558 |
-
"judge": "arena_user_::1",
|
559 |
-
"anony": false,
|
560 |
-
"tstamp": 1708095090.8232
|
561 |
-
},
|
562 |
-
{
|
563 |
-
"model_a": "Pix2PixZero",
|
564 |
-
"model_b": "Prompt2prompt",
|
565 |
-
"winner": "model_a",
|
566 |
-
"judge": "arena_user_::1",
|
567 |
-
"anony": false,
|
568 |
-
"tstamp": 1708095305.4665
|
569 |
-
},
|
570 |
-
{
|
571 |
-
"model_a": "InstructPix2Pix",
|
572 |
-
"model_b": "Prompt2prompt",
|
573 |
-
"winner": "model_b",
|
574 |
-
"judge": "arena_user_::1",
|
575 |
-
"anony": true,
|
576 |
-
"tstamp": 1708140553.1694
|
577 |
-
},
|
578 |
-
{
|
579 |
-
"model_a": "MagicBrush",
|
580 |
-
"model_b": "Prompt2prompt",
|
581 |
-
"winner": "model_a",
|
582 |
-
"judge": "arena_user_::1",
|
583 |
-
"anony": true,
|
584 |
-
"tstamp": 1708145512.3656
|
585 |
-
},
|
586 |
-
{
|
587 |
-
"model_a": "Pix2PixZero",
|
588 |
-
"model_b": "Prompt2prompt",
|
589 |
-
"winner": "tie (bothbad)",
|
590 |
-
"judge": "arena_user_::1",
|
591 |
-
"anony": true,
|
592 |
-
"tstamp": 1708145724.4127
|
593 |
-
},
|
594 |
-
{
|
595 |
-
"model_a": "Pix2PixZero",
|
596 |
-
"model_b": "PNP",
|
597 |
-
"winner": "model_b",
|
598 |
-
"judge": "arena_user_::1",
|
599 |
-
"anony": true,
|
600 |
-
"tstamp": 1708146846.5098
|
601 |
-
},
|
602 |
-
{
|
603 |
-
"model_a": "PNP",
|
604 |
-
"model_b": "MagicBrush",
|
605 |
-
"winner": "model_a",
|
606 |
-
"judge": "arena_user_::1",
|
607 |
-
"anony": true,
|
608 |
-
"tstamp": 1708189738.4864
|
609 |
-
},
|
610 |
-
{
|
611 |
-
"model_a": "Prompt2prompt",
|
612 |
-
"model_b": "InstructPix2Pix",
|
613 |
-
"winner": "model_b",
|
614 |
-
"judge": "arena_user_::1",
|
615 |
-
"anony": true,
|
616 |
-
"tstamp": 1708235874.9246
|
617 |
-
},
|
618 |
-
{
|
619 |
-
"model_a": "Pix2PixZero",
|
620 |
-
"model_b": "PNP",
|
621 |
-
"winner": "model_b",
|
622 |
-
"judge": "arena_user_::1",
|
623 |
-
"anony": false,
|
624 |
-
"tstamp": 1708257619.7115
|
625 |
-
},
|
626 |
-
{
|
627 |
-
"model_a": "MagicBrush",
|
628 |
-
"model_b": "Pix2PixZero",
|
629 |
-
"winner": "tie (bothbad)",
|
630 |
-
"judge": "arena_user_::1",
|
631 |
-
"anony": true,
|
632 |
-
"tstamp": 1708341265.7655
|
633 |
-
},
|
634 |
-
{
|
635 |
-
"model_a": "MagicBrush",
|
636 |
-
"model_b": "InstructPix2Pix",
|
637 |
-
"winner": "model_b",
|
638 |
-
"judge": "arena_user_::1",
|
639 |
-
"anony": true,
|
640 |
-
"tstamp": 1708350183.3086
|
641 |
-
},
|
642 |
-
{
|
643 |
-
"model_a": "MagicBrush",
|
644 |
-
"model_b": "Pix2PixZero",
|
645 |
-
"winner": "tie (bothbad)",
|
646 |
-
"judge": "arena_user_::1",
|
647 |
-
"anony": true,
|
648 |
-
"tstamp": 1708399707.1681
|
649 |
-
},
|
650 |
-
{
|
651 |
-
"model_a": "PNP",
|
652 |
-
"model_b": "MagicBrush",
|
653 |
-
"winner": "model_a",
|
654 |
-
"judge": "arena_user_::1",
|
655 |
-
"anony": true,
|
656 |
-
"tstamp": 1708441502.4707
|
657 |
-
},
|
658 |
-
{
|
659 |
-
"model_a": "InstructPix2Pix",
|
660 |
-
"model_b": "MagicBrush",
|
661 |
-
"winner": "model_a",
|
662 |
-
"judge": "arena_user_::1",
|
663 |
-
"anony": true,
|
664 |
-
"tstamp": 1708441716.8195
|
665 |
-
},
|
666 |
-
{
|
667 |
-
"model_a": "InstructPix2Pix",
|
668 |
-
"model_b": "MagicBrush",
|
669 |
-
"winner": "model_b",
|
670 |
-
"judge": "arena_user_::1",
|
671 |
-
"anony": false,
|
672 |
-
"tstamp": 1708546759.2009
|
673 |
-
},
|
674 |
-
{
|
675 |
-
"model_a": "InstructPix2Pix",
|
676 |
-
"model_b": "MagicBrush",
|
677 |
-
"winner": "model_a",
|
678 |
-
"judge": "arena_user_::1",
|
679 |
-
"anony": false,
|
680 |
-
"tstamp": 1708546805.4892
|
681 |
-
},
|
682 |
-
{
|
683 |
-
"model_a": "Pix2PixZero",
|
684 |
-
"model_b": "CycleDiffusion",
|
685 |
-
"winner": "tie (bothbad)",
|
686 |
-
"judge": "arena_user_::1",
|
687 |
-
"anony": true,
|
688 |
-
"tstamp": 1708547082.7124
|
689 |
-
},
|
690 |
-
{
|
691 |
-
"model_a": "InstructPix2Pix",
|
692 |
-
"model_b": "MagicBrush",
|
693 |
-
"winner": "model_b",
|
694 |
-
"judge": "arena_user_::1",
|
695 |
-
"anony": false,
|
696 |
-
"tstamp": 1708547166.9685
|
697 |
-
},
|
698 |
-
{
|
699 |
-
"model_a": "InstructPix2Pix",
|
700 |
-
"model_b": "MagicBrush",
|
701 |
-
"winner": "model_b",
|
702 |
-
"judge": "arena_user_::1",
|
703 |
-
"anony": false,
|
704 |
-
"tstamp": 1708547293.7107
|
705 |
-
},
|
706 |
-
{
|
707 |
-
"model_a": "CycleDiffusion",
|
708 |
-
"model_b": "PNP",
|
709 |
-
"winner": "tie (bothbad)",
|
710 |
-
"judge": "arena_user_::1",
|
711 |
-
"anony": true,
|
712 |
-
"tstamp": 1708575046.0529
|
713 |
-
},
|
714 |
-
{
|
715 |
-
"model_a": "CycleDiffusion",
|
716 |
-
"model_b": "MagicBrush",
|
717 |
-
"winner": "tie (bothbad)",
|
718 |
-
"judge": "arena_user_::1",
|
719 |
-
"anony": true,
|
720 |
-
"tstamp": 1708615466.9264
|
721 |
-
},
|
722 |
-
{
|
723 |
-
"model_a": "CycleDiffusion",
|
724 |
-
"model_b": "MagicBrush",
|
725 |
-
"winner": "model_b",
|
726 |
-
"judge": "arena_user_::1",
|
727 |
-
"anony": false,
|
728 |
-
"tstamp": 1708615516.3341
|
729 |
-
},
|
730 |
-
{
|
731 |
-
"model_a": "InstructPix2Pix",
|
732 |
-
"model_b": "PNP",
|
733 |
-
"winner": "model_b",
|
734 |
-
"judge": "arena_user_::1",
|
735 |
-
"anony": false,
|
736 |
-
"tstamp": 1709205399.0098
|
737 |
-
},
|
738 |
-
{
|
739 |
-
"model_a": "InstructPix2Pix",
|
740 |
-
"model_b": "PNP",
|
741 |
-
"winner": "model_b",
|
742 |
-
"judge": "arena_user_::1",
|
743 |
-
"anony": false,
|
744 |
-
"tstamp": 1709205767.8923
|
745 |
-
},
|
746 |
-
{
|
747 |
-
"model_a": "PNP",
|
748 |
-
"model_b": "InstructPix2Pix",
|
749 |
-
"winner": "model_b",
|
750 |
-
"judge": "arena_user_::1",
|
751 |
-
"anony": true,
|
752 |
-
"tstamp": 1709443700.05
|
753 |
-
},
|
754 |
-
{
|
755 |
-
"model_a": "MagicBrush",
|
756 |
-
"model_b": "Pix2PixZero",
|
757 |
-
"winner": "model_a",
|
758 |
-
"judge": "arena_user_::1",
|
759 |
-
"anony": true,
|
760 |
-
"tstamp": 1709702898.9291
|
761 |
-
},
|
762 |
-
{
|
763 |
-
"model_a": "CycleDiffusion",
|
764 |
-
"model_b": "Prompt2prompt",
|
765 |
-
"winner": "tie (bothbad)",
|
766 |
-
"judge": "arena_user_::1",
|
767 |
-
"anony": true,
|
768 |
-
"tstamp": 1710091925.1861
|
769 |
-
},
|
770 |
-
{
|
771 |
-
"model_a": "MagicBrush",
|
772 |
-
"model_b": "InstructPix2Pix",
|
773 |
-
"winner": "tie (bothbad)",
|
774 |
-
"judge": "arena_user_::1",
|
775 |
-
"anony": true,
|
776 |
-
"tstamp": 1710517781.1525
|
777 |
-
},
|
778 |
-
{
|
779 |
-
"model_a": "MagicBrush",
|
780 |
-
"model_b": "InstructPix2Pix",
|
781 |
-
"winner": "tie (bothbad)",
|
782 |
-
"judge": "arena_user_::1",
|
783 |
-
"anony": false,
|
784 |
-
"tstamp": 1710517859.2942
|
785 |
-
},
|
786 |
-
{
|
787 |
-
"model_a": "Pix2PixZero",
|
788 |
-
"model_b": "CycleDiffusion",
|
789 |
-
"winner": "tie (bothbad)",
|
790 |
-
"judge": "arena_user_::1",
|
791 |
-
"anony": true,
|
792 |
-
"tstamp": 1710535672.9791
|
793 |
-
}
|
794 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/results/20240315/elo_results_image_editing.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:5cef00c45d392a30913b367825270fcee5fd29e5c830866eef3d07146b3502f3
|
3 |
-
size 57091
|
|
|
|
|
|
|
|
arena_elo/results/20240315/image_editing_leaderboard.csv
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
key,Model,Arena Elo rating (anony),Arena Elo rating (full),License,Organization,Link
|
2 |
-
Prompt2prompt,Prompt2prompt,1227.5508595026165,1182.7966878908553,Apache-2.0,"Google, Tel Aviv University",https://prompt-to-prompt.github.io
|
3 |
-
InstructPix2Pix,InstructPix2Pix,1160.2057367236093,1104.6020920372373,"Copyright 2023 Timothy Brooks, Aleksander Holynski, Alexei A. Efros","University of California, Berkeley",https://www.timothybrooks.com/instruct-pix2pix
|
4 |
-
PNP,PNP,1142.693603173293,1163.4165011464634,-,Weizmann Institute of Science,https://github.com/MichalGeyer/plug-and-play
|
5 |
-
MagicBrush,MagicBrush,1053.1728944865915,1104.2259166081321,CC-BY-4.0,"The Ohio State University, University of Waterloo",https://osu-nlp-group.github.io/MagicBrush
|
6 |
-
Pix2PixZero,Pix2PixZero,918.6047552604578,899.6573774461386,MIT License,"Carnegie Mellon University, Adobe Research",https://pix2pixzero.github.io
|
7 |
-
CycleDiffusion,CycleDiffusion,865.0529105743963,820.8487760803515,X11,Carnegie Mellon University,https://github.com/ChenWu98/cycle-diffusion
|
8 |
-
SDEdit,SDEdit,632.7192402790356,724.4526487908217,MIT License,Stanford University,https://sde-image-editing.github.io
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/results/20240327/clean_battle_t2i_generation.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
arena_elo/results/20240327/elo_results_t2i_generation.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f525abe69feb822d341929b27ef7660ddd5e6ff0491bed8383a8e3d19f0342bd
|
3 |
-
size 62414
|
|
|
|
|
|
|
|
arena_elo/results/20240327/t2i_generation_leaderboard.csv
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
key,Model,Arena Elo rating (anony),Arena Elo rating (full),License,Organization,Link
|
2 |
-
Playground v2.5,Playground v2.5,1226.2872445351936,1246.1685934024742,Playground v2.5 Community License,Playground,https://huggingface.co/playgroundai/playground-v2.5-1024px-aesthetic
|
3 |
-
StableCascade,StableCascade,1105.3322734027522,1087.9198960927265,stable-cascade-nc-community (other),Stability AI,https://huggingface.co/stabilityai/stable-cascade
|
4 |
-
Playground v2,Playground v2,1091.4371447234744,1090.676108819673,Playground v2 Community License,Playground,https://huggingface.co/playgroundai/playground-v2-1024px-aesthetic
|
5 |
-
SDXLLightning,SDXLLightning,1043.235902888147,1045.0529259890538,openrail++,ByteDance,https://huggingface.co/ByteDance/SDXL-Lightning
|
6 |
-
PixArtAlpha,PixArtAlpha,1020.6412075829058,1006.9966036187151,openrail++,PixArt-alpha,https://huggingface.co/PixArt-alpha/PixArt-XL-2-1024-MS
|
7 |
-
SDXL,SDXL,964.7626495363717,969.5241392802999,openrail++,Stability AI,https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
|
8 |
-
SDXLTurbo,SDXLTurbo,912.2113859675355,914.3805456579931,sai-nc-community (other),Stability AI,https://huggingface.co/stabilityai/sdxl-turbo
|
9 |
-
OpenJourney,OpenJourney,841.2224045541894,832.2282703082603,creativeml-openrail-m,PromptHero,https://huggingface.co/prompthero/openjourney
|
10 |
-
LCM,LCM,794.8697868094328,810.2118373597045,MIT License,Tsinghua University,https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/results/20240328/clean_battle_image_editing.json
DELETED
@@ -1,890 +0,0 @@
|
|
1 |
-
[
|
2 |
-
{
|
3 |
-
"model_a": "CycleDiffusion",
|
4 |
-
"model_b": "InstructPix2Pix",
|
5 |
-
"winner": "model_b",
|
6 |
-
"judge": "arena_user_::1",
|
7 |
-
"anony": true,
|
8 |
-
"tstamp": 1707712630.872
|
9 |
-
},
|
10 |
-
{
|
11 |
-
"model_a": "CycleDiffusion",
|
12 |
-
"model_b": "InstructPix2Pix",
|
13 |
-
"winner": "model_b",
|
14 |
-
"judge": "arena_user_::1",
|
15 |
-
"anony": false,
|
16 |
-
"tstamp": 1707712699.668
|
17 |
-
},
|
18 |
-
{
|
19 |
-
"model_a": "Pix2PixZero",
|
20 |
-
"model_b": "MagicBrush",
|
21 |
-
"winner": "model_a",
|
22 |
-
"judge": "arena_user_::1",
|
23 |
-
"anony": true,
|
24 |
-
"tstamp": 1707712896.0427
|
25 |
-
},
|
26 |
-
{
|
27 |
-
"model_a": "CycleDiffusion",
|
28 |
-
"model_b": "InstructPix2Pix",
|
29 |
-
"winner": "model_b",
|
30 |
-
"judge": "arena_user_::1",
|
31 |
-
"anony": false,
|
32 |
-
"tstamp": 1707712929.7061
|
33 |
-
},
|
34 |
-
{
|
35 |
-
"model_a": "CycleDiffusion",
|
36 |
-
"model_b": "InstructPix2Pix",
|
37 |
-
"winner": "model_b",
|
38 |
-
"judge": "arena_user_::1",
|
39 |
-
"anony": true,
|
40 |
-
"tstamp": 1707713147.0445
|
41 |
-
},
|
42 |
-
{
|
43 |
-
"model_a": "CycleDiffusion",
|
44 |
-
"model_b": "PNP",
|
45 |
-
"winner": "model_b",
|
46 |
-
"judge": "arena_user_::1",
|
47 |
-
"anony": true,
|
48 |
-
"tstamp": 1707713198.9284
|
49 |
-
},
|
50 |
-
{
|
51 |
-
"model_a": "CycleDiffusion",
|
52 |
-
"model_b": "Prompt2prompt",
|
53 |
-
"winner": "model_b",
|
54 |
-
"judge": "arena_user_::1",
|
55 |
-
"anony": true,
|
56 |
-
"tstamp": 1707713210.1306
|
57 |
-
},
|
58 |
-
{
|
59 |
-
"model_a": "Prompt2prompt",
|
60 |
-
"model_b": "SDEdit",
|
61 |
-
"winner": "model_a",
|
62 |
-
"judge": "arena_user_::1",
|
63 |
-
"anony": true,
|
64 |
-
"tstamp": 1707713747.5115
|
65 |
-
},
|
66 |
-
{
|
67 |
-
"model_a": "PNP",
|
68 |
-
"model_b": "Pix2PixZero",
|
69 |
-
"winner": "model_a",
|
70 |
-
"judge": "arena_user_::1",
|
71 |
-
"anony": true,
|
72 |
-
"tstamp": 1707715613.7226
|
73 |
-
},
|
74 |
-
{
|
75 |
-
"model_a": "CycleDiffusion",
|
76 |
-
"model_b": "MagicBrush",
|
77 |
-
"winner": "model_b",
|
78 |
-
"judge": "arena_user_::1",
|
79 |
-
"anony": true,
|
80 |
-
"tstamp": 1707765708.2644
|
81 |
-
},
|
82 |
-
{
|
83 |
-
"model_a": "PNP",
|
84 |
-
"model_b": "CycleDiffusion",
|
85 |
-
"winner": "model_a",
|
86 |
-
"judge": "arena_user_::1",
|
87 |
-
"anony": true,
|
88 |
-
"tstamp": 1707765861.2742
|
89 |
-
},
|
90 |
-
{
|
91 |
-
"model_a": "PNP",
|
92 |
-
"model_b": "CycleDiffusion",
|
93 |
-
"winner": "model_a",
|
94 |
-
"judge": "arena_user_::1",
|
95 |
-
"anony": false,
|
96 |
-
"tstamp": 1707765975.0206
|
97 |
-
},
|
98 |
-
{
|
99 |
-
"model_a": "PNP",
|
100 |
-
"model_b": "CycleDiffusion",
|
101 |
-
"winner": "model_a",
|
102 |
-
"judge": "arena_user_::1",
|
103 |
-
"anony": true,
|
104 |
-
"tstamp": 1707768866.9065
|
105 |
-
},
|
106 |
-
{
|
107 |
-
"model_a": "SDEdit",
|
108 |
-
"model_b": "MagicBrush",
|
109 |
-
"winner": "model_b",
|
110 |
-
"judge": "arena_user_::1",
|
111 |
-
"anony": true,
|
112 |
-
"tstamp": 1707771673.2989
|
113 |
-
},
|
114 |
-
{
|
115 |
-
"model_a": "SDEdit",
|
116 |
-
"model_b": "MagicBrush",
|
117 |
-
"winner": "model_b",
|
118 |
-
"judge": "arena_user_::1",
|
119 |
-
"anony": true,
|
120 |
-
"tstamp": 1707784377.6617
|
121 |
-
},
|
122 |
-
{
|
123 |
-
"model_a": "SDEdit",
|
124 |
-
"model_b": "MagicBrush",
|
125 |
-
"winner": "model_b",
|
126 |
-
"judge": "arena_user_::1",
|
127 |
-
"anony": true,
|
128 |
-
"tstamp": 1707784466.8915
|
129 |
-
},
|
130 |
-
{
|
131 |
-
"model_a": "CycleDiffusion",
|
132 |
-
"model_b": "PNP",
|
133 |
-
"winner": "model_b",
|
134 |
-
"judge": "arena_user_::1",
|
135 |
-
"anony": true,
|
136 |
-
"tstamp": 1707784983.9581
|
137 |
-
},
|
138 |
-
{
|
139 |
-
"model_a": "MagicBrush",
|
140 |
-
"model_b": "SDEdit",
|
141 |
-
"winner": "model_a",
|
142 |
-
"judge": "arena_user_::1",
|
143 |
-
"anony": true,
|
144 |
-
"tstamp": 1707785277.16
|
145 |
-
},
|
146 |
-
{
|
147 |
-
"model_a": "MagicBrush",
|
148 |
-
"model_b": "SDEdit",
|
149 |
-
"winner": "model_a",
|
150 |
-
"judge": "arena_user_::1",
|
151 |
-
"anony": true,
|
152 |
-
"tstamp": 1707795299.0619
|
153 |
-
},
|
154 |
-
{
|
155 |
-
"model_a": "MagicBrush",
|
156 |
-
"model_b": "SDEdit",
|
157 |
-
"winner": "tie (bothbad)",
|
158 |
-
"judge": "arena_user_::1",
|
159 |
-
"anony": true,
|
160 |
-
"tstamp": 1707795798.752
|
161 |
-
},
|
162 |
-
{
|
163 |
-
"model_a": "SDEdit",
|
164 |
-
"model_b": "Prompt2prompt",
|
165 |
-
"winner": "model_b",
|
166 |
-
"judge": "arena_user_::1",
|
167 |
-
"anony": false,
|
168 |
-
"tstamp": 1707796435.7996
|
169 |
-
},
|
170 |
-
{
|
171 |
-
"model_a": "SDEdit",
|
172 |
-
"model_b": "CycleDiffusion",
|
173 |
-
"winner": "model_b",
|
174 |
-
"judge": "arena_user_::1",
|
175 |
-
"anony": false,
|
176 |
-
"tstamp": 1707797278.7369
|
177 |
-
},
|
178 |
-
{
|
179 |
-
"model_a": "SDEdit",
|
180 |
-
"model_b": "CycleDiffusion",
|
181 |
-
"winner": "model_a",
|
182 |
-
"judge": "arena_user_::1",
|
183 |
-
"anony": false,
|
184 |
-
"tstamp": 1707797279.6004
|
185 |
-
},
|
186 |
-
{
|
187 |
-
"model_a": "SDEdit",
|
188 |
-
"model_b": "Prompt2prompt",
|
189 |
-
"winner": "model_b",
|
190 |
-
"judge": "arena_user_::1",
|
191 |
-
"anony": true,
|
192 |
-
"tstamp": 1707805086.9739
|
193 |
-
},
|
194 |
-
{
|
195 |
-
"model_a": "PNP",
|
196 |
-
"model_b": "SDEdit",
|
197 |
-
"winner": "model_a",
|
198 |
-
"judge": "arena_user_::1",
|
199 |
-
"anony": true,
|
200 |
-
"tstamp": 1707805220.3253
|
201 |
-
},
|
202 |
-
{
|
203 |
-
"model_a": "InstructPix2Pix",
|
204 |
-
"model_b": "CycleDiffusion",
|
205 |
-
"winner": "tie (bothbad)",
|
206 |
-
"judge": "arena_user_::1",
|
207 |
-
"anony": true,
|
208 |
-
"tstamp": 1707805332.6322
|
209 |
-
},
|
210 |
-
{
|
211 |
-
"model_a": "InstructPix2Pix",
|
212 |
-
"model_b": "Prompt2prompt",
|
213 |
-
"winner": "model_b",
|
214 |
-
"judge": "arena_user_::1",
|
215 |
-
"anony": true,
|
216 |
-
"tstamp": 1707805476.0509
|
217 |
-
},
|
218 |
-
{
|
219 |
-
"model_a": "InstructPix2Pix",
|
220 |
-
"model_b": "Prompt2prompt",
|
221 |
-
"winner": "model_b",
|
222 |
-
"judge": "arena_user_::1",
|
223 |
-
"anony": true,
|
224 |
-
"tstamp": 1707818374.3438
|
225 |
-
},
|
226 |
-
{
|
227 |
-
"model_a": "PNP",
|
228 |
-
"model_b": "Prompt2prompt",
|
229 |
-
"winner": "model_b",
|
230 |
-
"judge": "arena_user_::1",
|
231 |
-
"anony": true,
|
232 |
-
"tstamp": 1707834631.9088
|
233 |
-
},
|
234 |
-
{
|
235 |
-
"model_a": "InstructPix2Pix",
|
236 |
-
"model_b": "SDEdit",
|
237 |
-
"winner": "model_a",
|
238 |
-
"judge": "arena_user_::1",
|
239 |
-
"anony": true,
|
240 |
-
"tstamp": 1707834954.0147
|
241 |
-
},
|
242 |
-
{
|
243 |
-
"model_a": "Prompt2prompt",
|
244 |
-
"model_b": "Pix2PixZero",
|
245 |
-
"winner": "tie (bothbad)",
|
246 |
-
"judge": "arena_user_::1",
|
247 |
-
"anony": true,
|
248 |
-
"tstamp": 1707835366.544
|
249 |
-
},
|
250 |
-
{
|
251 |
-
"model_a": "PNP",
|
252 |
-
"model_b": "SDEdit",
|
253 |
-
"winner": "model_a",
|
254 |
-
"judge": "arena_user_::1",
|
255 |
-
"anony": true,
|
256 |
-
"tstamp": 1707835643.6178
|
257 |
-
},
|
258 |
-
{
|
259 |
-
"model_a": "MagicBrush",
|
260 |
-
"model_b": "InstructPix2Pix",
|
261 |
-
"winner": "tie (bothbad)",
|
262 |
-
"judge": "arena_user_::1",
|
263 |
-
"anony": true,
|
264 |
-
"tstamp": 1707835789.25
|
265 |
-
},
|
266 |
-
{
|
267 |
-
"model_a": "MagicBrush",
|
268 |
-
"model_b": "PNP",
|
269 |
-
"winner": "tie (bothbad)",
|
270 |
-
"judge": "arena_user_::1",
|
271 |
-
"anony": true,
|
272 |
-
"tstamp": 1707836852.671
|
273 |
-
},
|
274 |
-
{
|
275 |
-
"model_a": "MagicBrush",
|
276 |
-
"model_b": "InstructPix2Pix",
|
277 |
-
"winner": "model_a",
|
278 |
-
"judge": "arena_user_::1",
|
279 |
-
"anony": false,
|
280 |
-
"tstamp": 1707836952.6082
|
281 |
-
},
|
282 |
-
{
|
283 |
-
"model_a": "CycleDiffusion",
|
284 |
-
"model_b": "SDEdit",
|
285 |
-
"winner": "tie (bothbad)",
|
286 |
-
"judge": "arena_user_::1",
|
287 |
-
"anony": false,
|
288 |
-
"tstamp": 1707837020.7148
|
289 |
-
},
|
290 |
-
{
|
291 |
-
"model_a": "InstructPix2Pix",
|
292 |
-
"model_b": "PNP",
|
293 |
-
"winner": "model_a",
|
294 |
-
"judge": "arena_user_::1",
|
295 |
-
"anony": true,
|
296 |
-
"tstamp": 1707837226.2259
|
297 |
-
},
|
298 |
-
{
|
299 |
-
"model_a": "Prompt2prompt",
|
300 |
-
"model_b": "Pix2PixZero",
|
301 |
-
"winner": "model_a",
|
302 |
-
"judge": "arena_user_::1",
|
303 |
-
"anony": true,
|
304 |
-
"tstamp": 1707838166.1449
|
305 |
-
},
|
306 |
-
{
|
307 |
-
"model_a": "InstructPix2Pix",
|
308 |
-
"model_b": "MagicBrush",
|
309 |
-
"winner": "tie (bothbad)",
|
310 |
-
"judge": "arena_user_::1",
|
311 |
-
"anony": true,
|
312 |
-
"tstamp": 1707838405.0013
|
313 |
-
},
|
314 |
-
{
|
315 |
-
"model_a": "MagicBrush",
|
316 |
-
"model_b": "CycleDiffusion",
|
317 |
-
"winner": "model_a",
|
318 |
-
"judge": "arena_user_::1",
|
319 |
-
"anony": true,
|
320 |
-
"tstamp": 1707839133.3126
|
321 |
-
},
|
322 |
-
{
|
323 |
-
"model_a": "Prompt2prompt",
|
324 |
-
"model_b": "InstructPix2Pix",
|
325 |
-
"winner": "model_a",
|
326 |
-
"judge": "arena_user_::1",
|
327 |
-
"anony": true,
|
328 |
-
"tstamp": 1707839484.6824
|
329 |
-
},
|
330 |
-
{
|
331 |
-
"model_a": "PNP",
|
332 |
-
"model_b": "InstructPix2Pix",
|
333 |
-
"winner": "tie (bothbad)",
|
334 |
-
"judge": "arena_user_::1",
|
335 |
-
"anony": true,
|
336 |
-
"tstamp": 1707850104.2499
|
337 |
-
},
|
338 |
-
{
|
339 |
-
"model_a": "InstructPix2Pix",
|
340 |
-
"model_b": "Pix2PixZero",
|
341 |
-
"winner": "model_a",
|
342 |
-
"judge": "arena_user_::1",
|
343 |
-
"anony": true,
|
344 |
-
"tstamp": 1707851384.7689
|
345 |
-
},
|
346 |
-
{
|
347 |
-
"model_a": "PNP",
|
348 |
-
"model_b": "MagicBrush",
|
349 |
-
"winner": "model_b",
|
350 |
-
"judge": "arena_user_::1",
|
351 |
-
"anony": true,
|
352 |
-
"tstamp": 1707851936.9466
|
353 |
-
},
|
354 |
-
{
|
355 |
-
"model_a": "CycleDiffusion",
|
356 |
-
"model_b": "MagicBrush",
|
357 |
-
"winner": "tie (bothbad)",
|
358 |
-
"judge": "arena_user_::1",
|
359 |
-
"anony": true,
|
360 |
-
"tstamp": 1707852836.3291
|
361 |
-
},
|
362 |
-
{
|
363 |
-
"model_a": "CycleDiffusion",
|
364 |
-
"model_b": "MagicBrush",
|
365 |
-
"winner": "tie (bothbad)",
|
366 |
-
"judge": "arena_user_::1",
|
367 |
-
"anony": false,
|
368 |
-
"tstamp": 1707852878.673
|
369 |
-
},
|
370 |
-
{
|
371 |
-
"model_a": "Prompt2prompt",
|
372 |
-
"model_b": "InstructPix2Pix",
|
373 |
-
"winner": "model_a",
|
374 |
-
"judge": "arena_user_::1",
|
375 |
-
"anony": true,
|
376 |
-
"tstamp": 1707853008.1359
|
377 |
-
},
|
378 |
-
{
|
379 |
-
"model_a": "InstructPix2Pix",
|
380 |
-
"model_b": "Pix2PixZero",
|
381 |
-
"winner": "model_a",
|
382 |
-
"judge": "arena_user_::1",
|
383 |
-
"anony": false,
|
384 |
-
"tstamp": 1707856807.6229
|
385 |
-
},
|
386 |
-
{
|
387 |
-
"model_a": "MagicBrush",
|
388 |
-
"model_b": "Pix2PixZero",
|
389 |
-
"winner": "tie (bothbad)",
|
390 |
-
"judge": "arena_user_::1",
|
391 |
-
"anony": false,
|
392 |
-
"tstamp": 1707863740.3507
|
393 |
-
},
|
394 |
-
{
|
395 |
-
"model_a": "MagicBrush",
|
396 |
-
"model_b": "PNP",
|
397 |
-
"winner": "model_b",
|
398 |
-
"judge": "arena_user_::1",
|
399 |
-
"anony": true,
|
400 |
-
"tstamp": 1707866312.1118
|
401 |
-
},
|
402 |
-
{
|
403 |
-
"model_a": "Pix2PixZero",
|
404 |
-
"model_b": "Prompt2prompt",
|
405 |
-
"winner": "model_b",
|
406 |
-
"judge": "arena_user_::1",
|
407 |
-
"anony": true,
|
408 |
-
"tstamp": 1707883083.3533
|
409 |
-
},
|
410 |
-
{
|
411 |
-
"model_a": "Pix2PixZero",
|
412 |
-
"model_b": "InstructPix2Pix",
|
413 |
-
"winner": "model_b",
|
414 |
-
"judge": "arena_user_::1",
|
415 |
-
"anony": true,
|
416 |
-
"tstamp": 1707883181.1397
|
417 |
-
},
|
418 |
-
{
|
419 |
-
"model_a": "Pix2PixZero",
|
420 |
-
"model_b": "Prompt2prompt",
|
421 |
-
"winner": "model_b",
|
422 |
-
"judge": "arena_user_::1",
|
423 |
-
"anony": true,
|
424 |
-
"tstamp": 1707883187.9173
|
425 |
-
},
|
426 |
-
{
|
427 |
-
"model_a": "PNP",
|
428 |
-
"model_b": "Prompt2prompt",
|
429 |
-
"winner": "model_a",
|
430 |
-
"judge": "arena_user_::1",
|
431 |
-
"anony": true,
|
432 |
-
"tstamp": 1707883507.587
|
433 |
-
},
|
434 |
-
{
|
435 |
-
"model_a": "Prompt2prompt",
|
436 |
-
"model_b": "CycleDiffusion",
|
437 |
-
"winner": "model_a",
|
438 |
-
"judge": "arena_user_::1",
|
439 |
-
"anony": true,
|
440 |
-
"tstamp": 1707883939.6125
|
441 |
-
},
|
442 |
-
{
|
443 |
-
"model_a": "Prompt2prompt",
|
444 |
-
"model_b": "MagicBrush",
|
445 |
-
"winner": "model_b",
|
446 |
-
"judge": "arena_user_::1",
|
447 |
-
"anony": true,
|
448 |
-
"tstamp": 1707892689.4407
|
449 |
-
},
|
450 |
-
{
|
451 |
-
"model_a": "MagicBrush",
|
452 |
-
"model_b": "InstructPix2Pix",
|
453 |
-
"winner": "model_b",
|
454 |
-
"judge": "arena_user_::1",
|
455 |
-
"anony": true,
|
456 |
-
"tstamp": 1707908988.749
|
457 |
-
},
|
458 |
-
{
|
459 |
-
"model_a": "Prompt2prompt",
|
460 |
-
"model_b": "InstructPix2Pix",
|
461 |
-
"winner": "model_a",
|
462 |
-
"judge": "arena_user_::1",
|
463 |
-
"anony": true,
|
464 |
-
"tstamp": 1707912639.2701
|
465 |
-
},
|
466 |
-
{
|
467 |
-
"model_a": "MagicBrush",
|
468 |
-
"model_b": "Pix2PixZero",
|
469 |
-
"winner": "model_a",
|
470 |
-
"judge": "arena_user_::1",
|
471 |
-
"anony": false,
|
472 |
-
"tstamp": 1707917685.9574
|
473 |
-
},
|
474 |
-
{
|
475 |
-
"model_a": "MagicBrush",
|
476 |
-
"model_b": "InstructPix2Pix",
|
477 |
-
"winner": "tie (bothbad)",
|
478 |
-
"judge": "arena_user_::1",
|
479 |
-
"anony": false,
|
480 |
-
"tstamp": 1707919429.336
|
481 |
-
},
|
482 |
-
{
|
483 |
-
"model_a": "InstructPix2Pix",
|
484 |
-
"model_b": "CycleDiffusion",
|
485 |
-
"winner": "model_a",
|
486 |
-
"judge": "arena_user_::1",
|
487 |
-
"anony": true,
|
488 |
-
"tstamp": 1707932651.9192
|
489 |
-
},
|
490 |
-
{
|
491 |
-
"model_a": "MagicBrush",
|
492 |
-
"model_b": "InstructPix2Pix",
|
493 |
-
"winner": "model_a",
|
494 |
-
"judge": "arena_user_::1",
|
495 |
-
"anony": true,
|
496 |
-
"tstamp": 1707932749.3107
|
497 |
-
},
|
498 |
-
{
|
499 |
-
"model_a": "Prompt2prompt",
|
500 |
-
"model_b": "PNP",
|
501 |
-
"winner": "model_a",
|
502 |
-
"judge": "arena_user_::1",
|
503 |
-
"anony": true,
|
504 |
-
"tstamp": 1707933208.5797
|
505 |
-
},
|
506 |
-
{
|
507 |
-
"model_a": "MagicBrush",
|
508 |
-
"model_b": "Pix2PixZero",
|
509 |
-
"winner": "model_a",
|
510 |
-
"judge": "arena_user_::1",
|
511 |
-
"anony": false,
|
512 |
-
"tstamp": 1707945335.6341
|
513 |
-
},
|
514 |
-
{
|
515 |
-
"model_a": "MagicBrush",
|
516 |
-
"model_b": "PNP",
|
517 |
-
"winner": "model_a",
|
518 |
-
"judge": "arena_user_::1",
|
519 |
-
"anony": false,
|
520 |
-
"tstamp": 1708031168.6838
|
521 |
-
},
|
522 |
-
{
|
523 |
-
"model_a": "Pix2PixZero",
|
524 |
-
"model_b": "PNP",
|
525 |
-
"winner": "model_b",
|
526 |
-
"judge": "arena_user_::1",
|
527 |
-
"anony": false,
|
528 |
-
"tstamp": 1708038931.5388
|
529 |
-
},
|
530 |
-
{
|
531 |
-
"model_a": "Pix2PixZero",
|
532 |
-
"model_b": "CycleDiffusion",
|
533 |
-
"winner": "tie (bothbad)",
|
534 |
-
"judge": "arena_user_::1",
|
535 |
-
"anony": true,
|
536 |
-
"tstamp": 1708057382.78
|
537 |
-
},
|
538 |
-
{
|
539 |
-
"model_a": "PNP",
|
540 |
-
"model_b": "InstructPix2Pix",
|
541 |
-
"winner": "model_b",
|
542 |
-
"judge": "arena_user_::1",
|
543 |
-
"anony": true,
|
544 |
-
"tstamp": 1708093689.8237
|
545 |
-
},
|
546 |
-
{
|
547 |
-
"model_a": "MagicBrush",
|
548 |
-
"model_b": "PNP",
|
549 |
-
"winner": "model_b",
|
550 |
-
"judge": "arena_user_::1",
|
551 |
-
"anony": true,
|
552 |
-
"tstamp": 1708093910.4683
|
553 |
-
},
|
554 |
-
{
|
555 |
-
"model_a": "Pix2PixZero",
|
556 |
-
"model_b": "Prompt2prompt",
|
557 |
-
"winner": "model_b",
|
558 |
-
"judge": "arena_user_::1",
|
559 |
-
"anony": false,
|
560 |
-
"tstamp": 1708095090.8232
|
561 |
-
},
|
562 |
-
{
|
563 |
-
"model_a": "Pix2PixZero",
|
564 |
-
"model_b": "Prompt2prompt",
|
565 |
-
"winner": "model_a",
|
566 |
-
"judge": "arena_user_::1",
|
567 |
-
"anony": false,
|
568 |
-
"tstamp": 1708095305.4665
|
569 |
-
},
|
570 |
-
{
|
571 |
-
"model_a": "InstructPix2Pix",
|
572 |
-
"model_b": "Prompt2prompt",
|
573 |
-
"winner": "model_b",
|
574 |
-
"judge": "arena_user_::1",
|
575 |
-
"anony": true,
|
576 |
-
"tstamp": 1708140553.1694
|
577 |
-
},
|
578 |
-
{
|
579 |
-
"model_a": "MagicBrush",
|
580 |
-
"model_b": "Prompt2prompt",
|
581 |
-
"winner": "model_a",
|
582 |
-
"judge": "arena_user_::1",
|
583 |
-
"anony": true,
|
584 |
-
"tstamp": 1708145512.3656
|
585 |
-
},
|
586 |
-
{
|
587 |
-
"model_a": "Pix2PixZero",
|
588 |
-
"model_b": "Prompt2prompt",
|
589 |
-
"winner": "tie (bothbad)",
|
590 |
-
"judge": "arena_user_::1",
|
591 |
-
"anony": true,
|
592 |
-
"tstamp": 1708145724.4127
|
593 |
-
},
|
594 |
-
{
|
595 |
-
"model_a": "Pix2PixZero",
|
596 |
-
"model_b": "PNP",
|
597 |
-
"winner": "model_b",
|
598 |
-
"judge": "arena_user_::1",
|
599 |
-
"anony": true,
|
600 |
-
"tstamp": 1708146846.5098
|
601 |
-
},
|
602 |
-
{
|
603 |
-
"model_a": "PNP",
|
604 |
-
"model_b": "MagicBrush",
|
605 |
-
"winner": "model_a",
|
606 |
-
"judge": "arena_user_::1",
|
607 |
-
"anony": true,
|
608 |
-
"tstamp": 1708189738.4864
|
609 |
-
},
|
610 |
-
{
|
611 |
-
"model_a": "Prompt2prompt",
|
612 |
-
"model_b": "InstructPix2Pix",
|
613 |
-
"winner": "model_b",
|
614 |
-
"judge": "arena_user_::1",
|
615 |
-
"anony": true,
|
616 |
-
"tstamp": 1708235874.9246
|
617 |
-
},
|
618 |
-
{
|
619 |
-
"model_a": "Pix2PixZero",
|
620 |
-
"model_b": "PNP",
|
621 |
-
"winner": "model_b",
|
622 |
-
"judge": "arena_user_::1",
|
623 |
-
"anony": false,
|
624 |
-
"tstamp": 1708257619.7115
|
625 |
-
},
|
626 |
-
{
|
627 |
-
"model_a": "MagicBrush",
|
628 |
-
"model_b": "Pix2PixZero",
|
629 |
-
"winner": "tie (bothbad)",
|
630 |
-
"judge": "arena_user_::1",
|
631 |
-
"anony": true,
|
632 |
-
"tstamp": 1708341265.7655
|
633 |
-
},
|
634 |
-
{
|
635 |
-
"model_a": "MagicBrush",
|
636 |
-
"model_b": "InstructPix2Pix",
|
637 |
-
"winner": "model_b",
|
638 |
-
"judge": "arena_user_::1",
|
639 |
-
"anony": true,
|
640 |
-
"tstamp": 1708350183.3086
|
641 |
-
},
|
642 |
-
{
|
643 |
-
"model_a": "MagicBrush",
|
644 |
-
"model_b": "Pix2PixZero",
|
645 |
-
"winner": "tie (bothbad)",
|
646 |
-
"judge": "arena_user_::1",
|
647 |
-
"anony": true,
|
648 |
-
"tstamp": 1708399707.1681
|
649 |
-
},
|
650 |
-
{
|
651 |
-
"model_a": "PNP",
|
652 |
-
"model_b": "MagicBrush",
|
653 |
-
"winner": "model_a",
|
654 |
-
"judge": "arena_user_::1",
|
655 |
-
"anony": true,
|
656 |
-
"tstamp": 1708441502.4707
|
657 |
-
},
|
658 |
-
{
|
659 |
-
"model_a": "InstructPix2Pix",
|
660 |
-
"model_b": "MagicBrush",
|
661 |
-
"winner": "model_a",
|
662 |
-
"judge": "arena_user_::1",
|
663 |
-
"anony": true,
|
664 |
-
"tstamp": 1708441716.8195
|
665 |
-
},
|
666 |
-
{
|
667 |
-
"model_a": "InstructPix2Pix",
|
668 |
-
"model_b": "MagicBrush",
|
669 |
-
"winner": "model_b",
|
670 |
-
"judge": "arena_user_::1",
|
671 |
-
"anony": false,
|
672 |
-
"tstamp": 1708546759.2009
|
673 |
-
},
|
674 |
-
{
|
675 |
-
"model_a": "InstructPix2Pix",
|
676 |
-
"model_b": "MagicBrush",
|
677 |
-
"winner": "model_a",
|
678 |
-
"judge": "arena_user_::1",
|
679 |
-
"anony": false,
|
680 |
-
"tstamp": 1708546805.4892
|
681 |
-
},
|
682 |
-
{
|
683 |
-
"model_a": "Pix2PixZero",
|
684 |
-
"model_b": "CycleDiffusion",
|
685 |
-
"winner": "tie (bothbad)",
|
686 |
-
"judge": "arena_user_::1",
|
687 |
-
"anony": true,
|
688 |
-
"tstamp": 1708547082.7124
|
689 |
-
},
|
690 |
-
{
|
691 |
-
"model_a": "InstructPix2Pix",
|
692 |
-
"model_b": "MagicBrush",
|
693 |
-
"winner": "model_b",
|
694 |
-
"judge": "arena_user_::1",
|
695 |
-
"anony": false,
|
696 |
-
"tstamp": 1708547166.9685
|
697 |
-
},
|
698 |
-
{
|
699 |
-
"model_a": "InstructPix2Pix",
|
700 |
-
"model_b": "MagicBrush",
|
701 |
-
"winner": "model_b",
|
702 |
-
"judge": "arena_user_::1",
|
703 |
-
"anony": false,
|
704 |
-
"tstamp": 1708547293.7107
|
705 |
-
},
|
706 |
-
{
|
707 |
-
"model_a": "CycleDiffusion",
|
708 |
-
"model_b": "PNP",
|
709 |
-
"winner": "tie (bothbad)",
|
710 |
-
"judge": "arena_user_::1",
|
711 |
-
"anony": true,
|
712 |
-
"tstamp": 1708575046.0529
|
713 |
-
},
|
714 |
-
{
|
715 |
-
"model_a": "CycleDiffusion",
|
716 |
-
"model_b": "MagicBrush",
|
717 |
-
"winner": "tie (bothbad)",
|
718 |
-
"judge": "arena_user_::1",
|
719 |
-
"anony": true,
|
720 |
-
"tstamp": 1708615466.9264
|
721 |
-
},
|
722 |
-
{
|
723 |
-
"model_a": "CycleDiffusion",
|
724 |
-
"model_b": "MagicBrush",
|
725 |
-
"winner": "model_b",
|
726 |
-
"judge": "arena_user_::1",
|
727 |
-
"anony": false,
|
728 |
-
"tstamp": 1708615516.3341
|
729 |
-
},
|
730 |
-
{
|
731 |
-
"model_a": "InstructPix2Pix",
|
732 |
-
"model_b": "PNP",
|
733 |
-
"winner": "model_b",
|
734 |
-
"judge": "arena_user_::1",
|
735 |
-
"anony": false,
|
736 |
-
"tstamp": 1709205399.0098
|
737 |
-
},
|
738 |
-
{
|
739 |
-
"model_a": "InstructPix2Pix",
|
740 |
-
"model_b": "PNP",
|
741 |
-
"winner": "model_b",
|
742 |
-
"judge": "arena_user_::1",
|
743 |
-
"anony": false,
|
744 |
-
"tstamp": 1709205767.8923
|
745 |
-
},
|
746 |
-
{
|
747 |
-
"model_a": "PNP",
|
748 |
-
"model_b": "InstructPix2Pix",
|
749 |
-
"winner": "model_b",
|
750 |
-
"judge": "arena_user_::1",
|
751 |
-
"anony": true,
|
752 |
-
"tstamp": 1709443700.05
|
753 |
-
},
|
754 |
-
{
|
755 |
-
"model_a": "MagicBrush",
|
756 |
-
"model_b": "Pix2PixZero",
|
757 |
-
"winner": "model_a",
|
758 |
-
"judge": "arena_user_::1",
|
759 |
-
"anony": true,
|
760 |
-
"tstamp": 1709702898.9291
|
761 |
-
},
|
762 |
-
{
|
763 |
-
"model_a": "CycleDiffusion",
|
764 |
-
"model_b": "Prompt2prompt",
|
765 |
-
"winner": "tie (bothbad)",
|
766 |
-
"judge": "arena_user_::1",
|
767 |
-
"anony": true,
|
768 |
-
"tstamp": 1710091925.1861
|
769 |
-
},
|
770 |
-
{
|
771 |
-
"model_a": "MagicBrush",
|
772 |
-
"model_b": "InstructPix2Pix",
|
773 |
-
"winner": "tie (bothbad)",
|
774 |
-
"judge": "arena_user_::1",
|
775 |
-
"anony": true,
|
776 |
-
"tstamp": 1710517781.1525
|
777 |
-
},
|
778 |
-
{
|
779 |
-
"model_a": "MagicBrush",
|
780 |
-
"model_b": "InstructPix2Pix",
|
781 |
-
"winner": "tie (bothbad)",
|
782 |
-
"judge": "arena_user_::1",
|
783 |
-
"anony": false,
|
784 |
-
"tstamp": 1710517859.2942
|
785 |
-
},
|
786 |
-
{
|
787 |
-
"model_a": "Pix2PixZero",
|
788 |
-
"model_b": "CycleDiffusion",
|
789 |
-
"winner": "tie (bothbad)",
|
790 |
-
"judge": "arena_user_::1",
|
791 |
-
"anony": true,
|
792 |
-
"tstamp": 1710535672.9791
|
793 |
-
},
|
794 |
-
{
|
795 |
-
"model_a": "CycleDiffusion",
|
796 |
-
"model_b": "Pix2PixZero",
|
797 |
-
"winner": "model_b",
|
798 |
-
"judge": "arena_user_10.16.25.191",
|
799 |
-
"anony": false,
|
800 |
-
"tstamp": 1711610477.1213
|
801 |
-
},
|
802 |
-
{
|
803 |
-
"model_a": "CycleDiffusion",
|
804 |
-
"model_b": "Pix2PixZero",
|
805 |
-
"winner": "model_b",
|
806 |
-
"judge": "arena_user_10.16.7.189",
|
807 |
-
"anony": false,
|
808 |
-
"tstamp": 1711629129.3894
|
809 |
-
},
|
810 |
-
{
|
811 |
-
"model_a": "InstructPix2Pix",
|
812 |
-
"model_b": "CycleDiffusion",
|
813 |
-
"winner": "model_b",
|
814 |
-
"judge": "arena_user_10.16.7.189",
|
815 |
-
"anony": false,
|
816 |
-
"tstamp": 1711629705.2246
|
817 |
-
},
|
818 |
-
{
|
819 |
-
"model_a": "CycleDiffusion",
|
820 |
-
"model_b": "Pix2PixZero",
|
821 |
-
"winner": "model_b",
|
822 |
-
"judge": "arena_user_10.16.25.191",
|
823 |
-
"anony": false,
|
824 |
-
"tstamp": 1711630362.5575
|
825 |
-
},
|
826 |
-
{
|
827 |
-
"model_a": "MagicBrush",
|
828 |
-
"model_b": "SDEdit",
|
829 |
-
"winner": "model_a",
|
830 |
-
"judge": "arena_user_127.0.0.1",
|
831 |
-
"anony": false,
|
832 |
-
"tstamp": 1711631112.5207
|
833 |
-
},
|
834 |
-
{
|
835 |
-
"model_a": "Pix2PixZero",
|
836 |
-
"model_b": "Prompt2prompt",
|
837 |
-
"winner": "model_a",
|
838 |
-
"judge": "arena_user_10.16.41.118",
|
839 |
-
"anony": false,
|
840 |
-
"tstamp": 1711631690.5127
|
841 |
-
},
|
842 |
-
{
|
843 |
-
"model_a": "MagicBrush",
|
844 |
-
"model_b": "InstructPix2Pix",
|
845 |
-
"winner": "model_a",
|
846 |
-
"judge": "arena_user_127.0.0.1",
|
847 |
-
"anony": false,
|
848 |
-
"tstamp": 1711633200.2923
|
849 |
-
},
|
850 |
-
{
|
851 |
-
"model_a": "MagicBrush",
|
852 |
-
"model_b": "InstructPix2Pix",
|
853 |
-
"winner": "model_a",
|
854 |
-
"judge": "arena_user_127.0.0.1",
|
855 |
-
"anony": false,
|
856 |
-
"tstamp": 1711633594.9922
|
857 |
-
},
|
858 |
-
{
|
859 |
-
"model_a": "MagicBrush",
|
860 |
-
"model_b": "SDEdit",
|
861 |
-
"winner": "model_a",
|
862 |
-
"judge": "arena_user_10.16.7.189",
|
863 |
-
"anony": false,
|
864 |
-
"tstamp": 1711635443.3071
|
865 |
-
},
|
866 |
-
{
|
867 |
-
"model_a": "CycleDiffusion",
|
868 |
-
"model_b": "MagicBrush",
|
869 |
-
"winner": "model_b",
|
870 |
-
"judge": "arena_user_10.16.25.191",
|
871 |
-
"anony": false,
|
872 |
-
"tstamp": 1711635899.3088
|
873 |
-
},
|
874 |
-
{
|
875 |
-
"model_a": "SDEdit",
|
876 |
-
"model_b": "MagicBrush",
|
877 |
-
"winner": "model_b",
|
878 |
-
"judge": "arena_user_10.16.41.118",
|
879 |
-
"anony": false,
|
880 |
-
"tstamp": 1711639015.428
|
881 |
-
},
|
882 |
-
{
|
883 |
-
"model_a": "InstructPix2Pix",
|
884 |
-
"model_b": "MagicBrush",
|
885 |
-
"winner": "model_b",
|
886 |
-
"judge": "arena_user_10.16.7.189",
|
887 |
-
"anony": false,
|
888 |
-
"tstamp": 1711646372.1201
|
889 |
-
}
|
890 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/results/20240328/elo_results_image_editing.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:1430e6703dd6fc1e5b8ce06b11bb3a47516763a33edaf99e4c8547da5d9a8516
|
3 |
-
size 57064
|
|
|
|
|
|
|
|
arena_elo/results/20240328/image_editing_leaderboard.csv
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
key,Model,Arena Elo rating (anony),Arena Elo rating (full),License,Organization,Link
|
2 |
-
Prompt2prompt,Prompt2prompt,1227.5508595026165,1158.5510681980204,Apache-2.0,"Google, Tel Aviv University",https://prompt-to-prompt.github.io
|
3 |
-
InstructPix2Pix,InstructPix2Pix,1160.2057367236093,1071.0628993075604,"Copyright 2023 Timothy Brooks, Aleksander Holynski, Alexei A. Efros","University of California, Berkeley",https://www.timothybrooks.com/instruct-pix2pix
|
4 |
-
PNP,PNP,1142.693603173293,1165.4957550490212,-,Weizmann Institute of Science,https://github.com/MichalGeyer/plug-and-play
|
5 |
-
MagicBrush,MagicBrush,1053.1728944865915,1130.5422054860635,CC-BY-4.0,"The Ohio State University, University of Waterloo",https://osu-nlp-group.github.io/MagicBrush
|
6 |
-
Pix2PixZero,Pix2PixZero,918.6047552604578,960.3217617445996,MIT License,"Carnegie Mellon University, Adobe Research",https://pix2pixzero.github.io
|
7 |
-
CycleDiffusion,CycleDiffusion,865.0529105743963,813.4794423328381,X11,Carnegie Mellon University,https://github.com/ChenWu98/cycle-diffusion
|
8 |
-
SDEdit,SDEdit,632.7192402790356,700.546867881897,MIT License,Stanford University,https://sde-image-editing.github.io
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/results/20240330/clean_battle_t2i_generation.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
arena_elo/results/20240330/elo_results_t2i_generation.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e963f9d4b66d29c2f05a3923eff56cebd1f09b07223ac069456e08dc6143cda8
|
3 |
-
size 66894
|
|
|
|
|
|
|
|
arena_elo/results/20240330/t2i_generation_leaderboard.csv
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
key,Model,Arena Elo rating (anony),Arena Elo rating (full),License,Organization,Link
|
2 |
-
Playground v2.5,Playground v2.5,1226.2872445351936,1236.5076527218755,Playground v2.5 Community License,Playground,https://huggingface.co/playgroundai/playground-v2.5-1024px-aesthetic
|
3 |
-
StableCascade,StableCascade,1105.3322734027522,1062.0980902577003,stable-cascade-nc-community (other),Stability AI,https://huggingface.co/stabilityai/stable-cascade
|
4 |
-
Playground v2,Playground v2,1091.4371447234744,1087.3576445526567,Playground v2 Community License,Playground,https://huggingface.co/playgroundai/playground-v2-1024px-aesthetic
|
5 |
-
SDXLLightning,SDXLLightning,1043.235902888147,1019.4526672266176,openrail++,ByteDance,https://huggingface.co/ByteDance/SDXL-Lightning
|
6 |
-
PixArtAlpha,PixArtAlpha,1020.6412075829058,1001.5090282446616,openrail++,PixArt-alpha,https://huggingface.co/PixArt-alpha/PixArt-XL-2-1024-MS
|
7 |
-
SDXL,SDXL,964.7626495363717,969.8928133531979,openrail++,Stability AI,https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
|
8 |
-
SDXLTurbo,SDXLTurbo,912.2113859675355,914.9478831930971,sai-nc-community (other),Stability AI,https://huggingface.co/stabilityai/sdxl-turbo
|
9 |
-
OpenJourney,OpenJourney,841.2224045541894,835.4563491411935,creativeml-openrail-m,PromptHero,https://huggingface.co/prompthero/openjourney
|
10 |
-
LCM,LCM,794.8697868094328,812.962889153237,MIT License,Tsinghua University,https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/results/20240408/clean_battle_t2i_generation.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
arena_elo/results/20240408/elo_results_t2i_generation.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:dd88783d1cf752a0977152f7e16e88b54759173cbb04fb55e9392703ff4819f5
|
3 |
-
size 66931
|
|
|
|
|
|
|
|
arena_elo/results/20240408/t2i_generation_leaderboard.csv
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
key,Model,Arena Elo rating (anony),Arena Elo rating (full),License,Organization,Link
|
2 |
-
Playground v2.5,Playground v2.5,1226.2872445351936,1233.8616648345985,Playground v2.5 Community License,Playground,https://huggingface.co/playgroundai/playground-v2.5-1024px-aesthetic
|
3 |
-
StableCascade,StableCascade,1105.3322734027522,1031.1844458387527,stable-cascade-nc-community (other),Stability AI,https://huggingface.co/stabilityai/stable-cascade
|
4 |
-
Playground v2,Playground v2,1091.4371447234744,1093.6921447327898,Playground v2 Community License,Playground,https://huggingface.co/playgroundai/playground-v2-1024px-aesthetic
|
5 |
-
SDXLLightning,SDXLLightning,1043.235902888147,1004.2360415152086,openrail++,ByteDance,https://huggingface.co/ByteDance/SDXL-Lightning
|
6 |
-
PixArtAlpha,PixArtAlpha,1020.6412075829058,999.6264863931511,openrail++,PixArt-alpha,https://huggingface.co/PixArt-alpha/PixArt-XL-2-1024-MS
|
7 |
-
SDXL,SDXL,964.7626495363717,975.3460583905047,openrail++,Stability AI,https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
|
8 |
-
SDXLTurbo,SDXLTurbo,912.2113859675355,927.1873122981513,sai-nc-community (other),Stability AI,https://huggingface.co/stabilityai/sdxl-turbo
|
9 |
-
OpenJourney,OpenJourney,841.2224045541894,848.6657236271969,creativeml-openrail-m,PromptHero,https://huggingface.co/prompthero/openjourney
|
10 |
-
LCM,LCM,794.8697868094328,828.5108951096241,MIT License,Tsinghua University,https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/results/20240411/clean_battle_image_editing.json
DELETED
@@ -1,906 +0,0 @@
|
|
1 |
-
[
|
2 |
-
{
|
3 |
-
"model_a": "CycleDiffusion",
|
4 |
-
"model_b": "InstructPix2Pix",
|
5 |
-
"winner": "model_b",
|
6 |
-
"judge": "arena_user_::1",
|
7 |
-
"anony": true,
|
8 |
-
"tstamp": 1707712630.872
|
9 |
-
},
|
10 |
-
{
|
11 |
-
"model_a": "CycleDiffusion",
|
12 |
-
"model_b": "InstructPix2Pix",
|
13 |
-
"winner": "model_b",
|
14 |
-
"judge": "arena_user_::1",
|
15 |
-
"anony": false,
|
16 |
-
"tstamp": 1707712699.668
|
17 |
-
},
|
18 |
-
{
|
19 |
-
"model_a": "Pix2PixZero",
|
20 |
-
"model_b": "MagicBrush",
|
21 |
-
"winner": "model_a",
|
22 |
-
"judge": "arena_user_::1",
|
23 |
-
"anony": true,
|
24 |
-
"tstamp": 1707712896.0427
|
25 |
-
},
|
26 |
-
{
|
27 |
-
"model_a": "CycleDiffusion",
|
28 |
-
"model_b": "InstructPix2Pix",
|
29 |
-
"winner": "model_b",
|
30 |
-
"judge": "arena_user_::1",
|
31 |
-
"anony": false,
|
32 |
-
"tstamp": 1707712929.7061
|
33 |
-
},
|
34 |
-
{
|
35 |
-
"model_a": "CycleDiffusion",
|
36 |
-
"model_b": "InstructPix2Pix",
|
37 |
-
"winner": "model_b",
|
38 |
-
"judge": "arena_user_::1",
|
39 |
-
"anony": true,
|
40 |
-
"tstamp": 1707713147.0445
|
41 |
-
},
|
42 |
-
{
|
43 |
-
"model_a": "CycleDiffusion",
|
44 |
-
"model_b": "PNP",
|
45 |
-
"winner": "model_b",
|
46 |
-
"judge": "arena_user_::1",
|
47 |
-
"anony": true,
|
48 |
-
"tstamp": 1707713198.9284
|
49 |
-
},
|
50 |
-
{
|
51 |
-
"model_a": "CycleDiffusion",
|
52 |
-
"model_b": "Prompt2prompt",
|
53 |
-
"winner": "model_b",
|
54 |
-
"judge": "arena_user_::1",
|
55 |
-
"anony": true,
|
56 |
-
"tstamp": 1707713210.1306
|
57 |
-
},
|
58 |
-
{
|
59 |
-
"model_a": "Prompt2prompt",
|
60 |
-
"model_b": "SDEdit",
|
61 |
-
"winner": "model_a",
|
62 |
-
"judge": "arena_user_::1",
|
63 |
-
"anony": true,
|
64 |
-
"tstamp": 1707713747.5115
|
65 |
-
},
|
66 |
-
{
|
67 |
-
"model_a": "PNP",
|
68 |
-
"model_b": "Pix2PixZero",
|
69 |
-
"winner": "model_a",
|
70 |
-
"judge": "arena_user_::1",
|
71 |
-
"anony": true,
|
72 |
-
"tstamp": 1707715613.7226
|
73 |
-
},
|
74 |
-
{
|
75 |
-
"model_a": "CycleDiffusion",
|
76 |
-
"model_b": "MagicBrush",
|
77 |
-
"winner": "model_b",
|
78 |
-
"judge": "arena_user_::1",
|
79 |
-
"anony": true,
|
80 |
-
"tstamp": 1707765708.2644
|
81 |
-
},
|
82 |
-
{
|
83 |
-
"model_a": "PNP",
|
84 |
-
"model_b": "CycleDiffusion",
|
85 |
-
"winner": "model_a",
|
86 |
-
"judge": "arena_user_::1",
|
87 |
-
"anony": true,
|
88 |
-
"tstamp": 1707765861.2742
|
89 |
-
},
|
90 |
-
{
|
91 |
-
"model_a": "PNP",
|
92 |
-
"model_b": "CycleDiffusion",
|
93 |
-
"winner": "model_a",
|
94 |
-
"judge": "arena_user_::1",
|
95 |
-
"anony": false,
|
96 |
-
"tstamp": 1707765975.0206
|
97 |
-
},
|
98 |
-
{
|
99 |
-
"model_a": "PNP",
|
100 |
-
"model_b": "CycleDiffusion",
|
101 |
-
"winner": "model_a",
|
102 |
-
"judge": "arena_user_::1",
|
103 |
-
"anony": true,
|
104 |
-
"tstamp": 1707768866.9065
|
105 |
-
},
|
106 |
-
{
|
107 |
-
"model_a": "SDEdit",
|
108 |
-
"model_b": "MagicBrush",
|
109 |
-
"winner": "model_b",
|
110 |
-
"judge": "arena_user_::1",
|
111 |
-
"anony": true,
|
112 |
-
"tstamp": 1707771673.2989
|
113 |
-
},
|
114 |
-
{
|
115 |
-
"model_a": "SDEdit",
|
116 |
-
"model_b": "MagicBrush",
|
117 |
-
"winner": "model_b",
|
118 |
-
"judge": "arena_user_::1",
|
119 |
-
"anony": true,
|
120 |
-
"tstamp": 1707784377.6617
|
121 |
-
},
|
122 |
-
{
|
123 |
-
"model_a": "SDEdit",
|
124 |
-
"model_b": "MagicBrush",
|
125 |
-
"winner": "model_b",
|
126 |
-
"judge": "arena_user_::1",
|
127 |
-
"anony": true,
|
128 |
-
"tstamp": 1707784466.8915
|
129 |
-
},
|
130 |
-
{
|
131 |
-
"model_a": "CycleDiffusion",
|
132 |
-
"model_b": "PNP",
|
133 |
-
"winner": "model_b",
|
134 |
-
"judge": "arena_user_::1",
|
135 |
-
"anony": true,
|
136 |
-
"tstamp": 1707784983.9581
|
137 |
-
},
|
138 |
-
{
|
139 |
-
"model_a": "MagicBrush",
|
140 |
-
"model_b": "SDEdit",
|
141 |
-
"winner": "model_a",
|
142 |
-
"judge": "arena_user_::1",
|
143 |
-
"anony": true,
|
144 |
-
"tstamp": 1707785277.16
|
145 |
-
},
|
146 |
-
{
|
147 |
-
"model_a": "MagicBrush",
|
148 |
-
"model_b": "SDEdit",
|
149 |
-
"winner": "model_a",
|
150 |
-
"judge": "arena_user_::1",
|
151 |
-
"anony": true,
|
152 |
-
"tstamp": 1707795299.0619
|
153 |
-
},
|
154 |
-
{
|
155 |
-
"model_a": "MagicBrush",
|
156 |
-
"model_b": "SDEdit",
|
157 |
-
"winner": "tie (bothbad)",
|
158 |
-
"judge": "arena_user_::1",
|
159 |
-
"anony": true,
|
160 |
-
"tstamp": 1707795798.752
|
161 |
-
},
|
162 |
-
{
|
163 |
-
"model_a": "SDEdit",
|
164 |
-
"model_b": "Prompt2prompt",
|
165 |
-
"winner": "model_b",
|
166 |
-
"judge": "arena_user_::1",
|
167 |
-
"anony": false,
|
168 |
-
"tstamp": 1707796435.7996
|
169 |
-
},
|
170 |
-
{
|
171 |
-
"model_a": "SDEdit",
|
172 |
-
"model_b": "CycleDiffusion",
|
173 |
-
"winner": "model_b",
|
174 |
-
"judge": "arena_user_::1",
|
175 |
-
"anony": false,
|
176 |
-
"tstamp": 1707797278.7369
|
177 |
-
},
|
178 |
-
{
|
179 |
-
"model_a": "SDEdit",
|
180 |
-
"model_b": "CycleDiffusion",
|
181 |
-
"winner": "model_a",
|
182 |
-
"judge": "arena_user_::1",
|
183 |
-
"anony": false,
|
184 |
-
"tstamp": 1707797279.6004
|
185 |
-
},
|
186 |
-
{
|
187 |
-
"model_a": "SDEdit",
|
188 |
-
"model_b": "Prompt2prompt",
|
189 |
-
"winner": "model_b",
|
190 |
-
"judge": "arena_user_::1",
|
191 |
-
"anony": true,
|
192 |
-
"tstamp": 1707805086.9739
|
193 |
-
},
|
194 |
-
{
|
195 |
-
"model_a": "PNP",
|
196 |
-
"model_b": "SDEdit",
|
197 |
-
"winner": "model_a",
|
198 |
-
"judge": "arena_user_::1",
|
199 |
-
"anony": true,
|
200 |
-
"tstamp": 1707805220.3253
|
201 |
-
},
|
202 |
-
{
|
203 |
-
"model_a": "InstructPix2Pix",
|
204 |
-
"model_b": "CycleDiffusion",
|
205 |
-
"winner": "tie (bothbad)",
|
206 |
-
"judge": "arena_user_::1",
|
207 |
-
"anony": true,
|
208 |
-
"tstamp": 1707805332.6322
|
209 |
-
},
|
210 |
-
{
|
211 |
-
"model_a": "InstructPix2Pix",
|
212 |
-
"model_b": "Prompt2prompt",
|
213 |
-
"winner": "model_b",
|
214 |
-
"judge": "arena_user_::1",
|
215 |
-
"anony": true,
|
216 |
-
"tstamp": 1707805476.0509
|
217 |
-
},
|
218 |
-
{
|
219 |
-
"model_a": "InstructPix2Pix",
|
220 |
-
"model_b": "Prompt2prompt",
|
221 |
-
"winner": "model_b",
|
222 |
-
"judge": "arena_user_::1",
|
223 |
-
"anony": true,
|
224 |
-
"tstamp": 1707818374.3438
|
225 |
-
},
|
226 |
-
{
|
227 |
-
"model_a": "PNP",
|
228 |
-
"model_b": "Prompt2prompt",
|
229 |
-
"winner": "model_b",
|
230 |
-
"judge": "arena_user_::1",
|
231 |
-
"anony": true,
|
232 |
-
"tstamp": 1707834631.9088
|
233 |
-
},
|
234 |
-
{
|
235 |
-
"model_a": "InstructPix2Pix",
|
236 |
-
"model_b": "SDEdit",
|
237 |
-
"winner": "model_a",
|
238 |
-
"judge": "arena_user_::1",
|
239 |
-
"anony": true,
|
240 |
-
"tstamp": 1707834954.0147
|
241 |
-
},
|
242 |
-
{
|
243 |
-
"model_a": "Prompt2prompt",
|
244 |
-
"model_b": "Pix2PixZero",
|
245 |
-
"winner": "tie (bothbad)",
|
246 |
-
"judge": "arena_user_::1",
|
247 |
-
"anony": true,
|
248 |
-
"tstamp": 1707835366.544
|
249 |
-
},
|
250 |
-
{
|
251 |
-
"model_a": "PNP",
|
252 |
-
"model_b": "SDEdit",
|
253 |
-
"winner": "model_a",
|
254 |
-
"judge": "arena_user_::1",
|
255 |
-
"anony": true,
|
256 |
-
"tstamp": 1707835643.6178
|
257 |
-
},
|
258 |
-
{
|
259 |
-
"model_a": "MagicBrush",
|
260 |
-
"model_b": "InstructPix2Pix",
|
261 |
-
"winner": "tie (bothbad)",
|
262 |
-
"judge": "arena_user_::1",
|
263 |
-
"anony": true,
|
264 |
-
"tstamp": 1707835789.25
|
265 |
-
},
|
266 |
-
{
|
267 |
-
"model_a": "MagicBrush",
|
268 |
-
"model_b": "PNP",
|
269 |
-
"winner": "tie (bothbad)",
|
270 |
-
"judge": "arena_user_::1",
|
271 |
-
"anony": true,
|
272 |
-
"tstamp": 1707836852.671
|
273 |
-
},
|
274 |
-
{
|
275 |
-
"model_a": "MagicBrush",
|
276 |
-
"model_b": "InstructPix2Pix",
|
277 |
-
"winner": "model_a",
|
278 |
-
"judge": "arena_user_::1",
|
279 |
-
"anony": false,
|
280 |
-
"tstamp": 1707836952.6082
|
281 |
-
},
|
282 |
-
{
|
283 |
-
"model_a": "CycleDiffusion",
|
284 |
-
"model_b": "SDEdit",
|
285 |
-
"winner": "tie (bothbad)",
|
286 |
-
"judge": "arena_user_::1",
|
287 |
-
"anony": false,
|
288 |
-
"tstamp": 1707837020.7148
|
289 |
-
},
|
290 |
-
{
|
291 |
-
"model_a": "InstructPix2Pix",
|
292 |
-
"model_b": "PNP",
|
293 |
-
"winner": "model_a",
|
294 |
-
"judge": "arena_user_::1",
|
295 |
-
"anony": true,
|
296 |
-
"tstamp": 1707837226.2259
|
297 |
-
},
|
298 |
-
{
|
299 |
-
"model_a": "Prompt2prompt",
|
300 |
-
"model_b": "Pix2PixZero",
|
301 |
-
"winner": "model_a",
|
302 |
-
"judge": "arena_user_::1",
|
303 |
-
"anony": true,
|
304 |
-
"tstamp": 1707838166.1449
|
305 |
-
},
|
306 |
-
{
|
307 |
-
"model_a": "InstructPix2Pix",
|
308 |
-
"model_b": "MagicBrush",
|
309 |
-
"winner": "tie (bothbad)",
|
310 |
-
"judge": "arena_user_::1",
|
311 |
-
"anony": true,
|
312 |
-
"tstamp": 1707838405.0013
|
313 |
-
},
|
314 |
-
{
|
315 |
-
"model_a": "MagicBrush",
|
316 |
-
"model_b": "CycleDiffusion",
|
317 |
-
"winner": "model_a",
|
318 |
-
"judge": "arena_user_::1",
|
319 |
-
"anony": true,
|
320 |
-
"tstamp": 1707839133.3126
|
321 |
-
},
|
322 |
-
{
|
323 |
-
"model_a": "Prompt2prompt",
|
324 |
-
"model_b": "InstructPix2Pix",
|
325 |
-
"winner": "model_a",
|
326 |
-
"judge": "arena_user_::1",
|
327 |
-
"anony": true,
|
328 |
-
"tstamp": 1707839484.6824
|
329 |
-
},
|
330 |
-
{
|
331 |
-
"model_a": "PNP",
|
332 |
-
"model_b": "InstructPix2Pix",
|
333 |
-
"winner": "tie (bothbad)",
|
334 |
-
"judge": "arena_user_::1",
|
335 |
-
"anony": true,
|
336 |
-
"tstamp": 1707850104.2499
|
337 |
-
},
|
338 |
-
{
|
339 |
-
"model_a": "InstructPix2Pix",
|
340 |
-
"model_b": "Pix2PixZero",
|
341 |
-
"winner": "model_a",
|
342 |
-
"judge": "arena_user_::1",
|
343 |
-
"anony": true,
|
344 |
-
"tstamp": 1707851384.7689
|
345 |
-
},
|
346 |
-
{
|
347 |
-
"model_a": "PNP",
|
348 |
-
"model_b": "MagicBrush",
|
349 |
-
"winner": "model_b",
|
350 |
-
"judge": "arena_user_::1",
|
351 |
-
"anony": true,
|
352 |
-
"tstamp": 1707851936.9466
|
353 |
-
},
|
354 |
-
{
|
355 |
-
"model_a": "CycleDiffusion",
|
356 |
-
"model_b": "MagicBrush",
|
357 |
-
"winner": "tie (bothbad)",
|
358 |
-
"judge": "arena_user_::1",
|
359 |
-
"anony": true,
|
360 |
-
"tstamp": 1707852836.3291
|
361 |
-
},
|
362 |
-
{
|
363 |
-
"model_a": "CycleDiffusion",
|
364 |
-
"model_b": "MagicBrush",
|
365 |
-
"winner": "tie (bothbad)",
|
366 |
-
"judge": "arena_user_::1",
|
367 |
-
"anony": false,
|
368 |
-
"tstamp": 1707852878.673
|
369 |
-
},
|
370 |
-
{
|
371 |
-
"model_a": "Prompt2prompt",
|
372 |
-
"model_b": "InstructPix2Pix",
|
373 |
-
"winner": "model_a",
|
374 |
-
"judge": "arena_user_::1",
|
375 |
-
"anony": true,
|
376 |
-
"tstamp": 1707853008.1359
|
377 |
-
},
|
378 |
-
{
|
379 |
-
"model_a": "InstructPix2Pix",
|
380 |
-
"model_b": "Pix2PixZero",
|
381 |
-
"winner": "model_a",
|
382 |
-
"judge": "arena_user_::1",
|
383 |
-
"anony": false,
|
384 |
-
"tstamp": 1707856807.6229
|
385 |
-
},
|
386 |
-
{
|
387 |
-
"model_a": "MagicBrush",
|
388 |
-
"model_b": "Pix2PixZero",
|
389 |
-
"winner": "tie (bothbad)",
|
390 |
-
"judge": "arena_user_::1",
|
391 |
-
"anony": false,
|
392 |
-
"tstamp": 1707863740.3507
|
393 |
-
},
|
394 |
-
{
|
395 |
-
"model_a": "MagicBrush",
|
396 |
-
"model_b": "PNP",
|
397 |
-
"winner": "model_b",
|
398 |
-
"judge": "arena_user_::1",
|
399 |
-
"anony": true,
|
400 |
-
"tstamp": 1707866312.1118
|
401 |
-
},
|
402 |
-
{
|
403 |
-
"model_a": "Pix2PixZero",
|
404 |
-
"model_b": "Prompt2prompt",
|
405 |
-
"winner": "model_b",
|
406 |
-
"judge": "arena_user_::1",
|
407 |
-
"anony": true,
|
408 |
-
"tstamp": 1707883083.3533
|
409 |
-
},
|
410 |
-
{
|
411 |
-
"model_a": "Pix2PixZero",
|
412 |
-
"model_b": "InstructPix2Pix",
|
413 |
-
"winner": "model_b",
|
414 |
-
"judge": "arena_user_::1",
|
415 |
-
"anony": true,
|
416 |
-
"tstamp": 1707883181.1397
|
417 |
-
},
|
418 |
-
{
|
419 |
-
"model_a": "Pix2PixZero",
|
420 |
-
"model_b": "Prompt2prompt",
|
421 |
-
"winner": "model_b",
|
422 |
-
"judge": "arena_user_::1",
|
423 |
-
"anony": true,
|
424 |
-
"tstamp": 1707883187.9173
|
425 |
-
},
|
426 |
-
{
|
427 |
-
"model_a": "PNP",
|
428 |
-
"model_b": "Prompt2prompt",
|
429 |
-
"winner": "model_a",
|
430 |
-
"judge": "arena_user_::1",
|
431 |
-
"anony": true,
|
432 |
-
"tstamp": 1707883507.587
|
433 |
-
},
|
434 |
-
{
|
435 |
-
"model_a": "Prompt2prompt",
|
436 |
-
"model_b": "CycleDiffusion",
|
437 |
-
"winner": "model_a",
|
438 |
-
"judge": "arena_user_::1",
|
439 |
-
"anony": true,
|
440 |
-
"tstamp": 1707883939.6125
|
441 |
-
},
|
442 |
-
{
|
443 |
-
"model_a": "Prompt2prompt",
|
444 |
-
"model_b": "MagicBrush",
|
445 |
-
"winner": "model_b",
|
446 |
-
"judge": "arena_user_::1",
|
447 |
-
"anony": true,
|
448 |
-
"tstamp": 1707892689.4407
|
449 |
-
},
|
450 |
-
{
|
451 |
-
"model_a": "MagicBrush",
|
452 |
-
"model_b": "InstructPix2Pix",
|
453 |
-
"winner": "model_b",
|
454 |
-
"judge": "arena_user_::1",
|
455 |
-
"anony": true,
|
456 |
-
"tstamp": 1707908988.749
|
457 |
-
},
|
458 |
-
{
|
459 |
-
"model_a": "Prompt2prompt",
|
460 |
-
"model_b": "InstructPix2Pix",
|
461 |
-
"winner": "model_a",
|
462 |
-
"judge": "arena_user_::1",
|
463 |
-
"anony": true,
|
464 |
-
"tstamp": 1707912639.2701
|
465 |
-
},
|
466 |
-
{
|
467 |
-
"model_a": "MagicBrush",
|
468 |
-
"model_b": "Pix2PixZero",
|
469 |
-
"winner": "model_a",
|
470 |
-
"judge": "arena_user_::1",
|
471 |
-
"anony": false,
|
472 |
-
"tstamp": 1707917685.9574
|
473 |
-
},
|
474 |
-
{
|
475 |
-
"model_a": "MagicBrush",
|
476 |
-
"model_b": "InstructPix2Pix",
|
477 |
-
"winner": "tie (bothbad)",
|
478 |
-
"judge": "arena_user_::1",
|
479 |
-
"anony": false,
|
480 |
-
"tstamp": 1707919429.336
|
481 |
-
},
|
482 |
-
{
|
483 |
-
"model_a": "InstructPix2Pix",
|
484 |
-
"model_b": "CycleDiffusion",
|
485 |
-
"winner": "model_a",
|
486 |
-
"judge": "arena_user_::1",
|
487 |
-
"anony": true,
|
488 |
-
"tstamp": 1707932651.9192
|
489 |
-
},
|
490 |
-
{
|
491 |
-
"model_a": "MagicBrush",
|
492 |
-
"model_b": "InstructPix2Pix",
|
493 |
-
"winner": "model_a",
|
494 |
-
"judge": "arena_user_::1",
|
495 |
-
"anony": true,
|
496 |
-
"tstamp": 1707932749.3107
|
497 |
-
},
|
498 |
-
{
|
499 |
-
"model_a": "Prompt2prompt",
|
500 |
-
"model_b": "PNP",
|
501 |
-
"winner": "model_a",
|
502 |
-
"judge": "arena_user_::1",
|
503 |
-
"anony": true,
|
504 |
-
"tstamp": 1707933208.5797
|
505 |
-
},
|
506 |
-
{
|
507 |
-
"model_a": "MagicBrush",
|
508 |
-
"model_b": "Pix2PixZero",
|
509 |
-
"winner": "model_a",
|
510 |
-
"judge": "arena_user_::1",
|
511 |
-
"anony": false,
|
512 |
-
"tstamp": 1707945335.6341
|
513 |
-
},
|
514 |
-
{
|
515 |
-
"model_a": "MagicBrush",
|
516 |
-
"model_b": "PNP",
|
517 |
-
"winner": "model_a",
|
518 |
-
"judge": "arena_user_::1",
|
519 |
-
"anony": false,
|
520 |
-
"tstamp": 1708031168.6838
|
521 |
-
},
|
522 |
-
{
|
523 |
-
"model_a": "Pix2PixZero",
|
524 |
-
"model_b": "PNP",
|
525 |
-
"winner": "model_b",
|
526 |
-
"judge": "arena_user_::1",
|
527 |
-
"anony": false,
|
528 |
-
"tstamp": 1708038931.5388
|
529 |
-
},
|
530 |
-
{
|
531 |
-
"model_a": "Pix2PixZero",
|
532 |
-
"model_b": "CycleDiffusion",
|
533 |
-
"winner": "tie (bothbad)",
|
534 |
-
"judge": "arena_user_::1",
|
535 |
-
"anony": true,
|
536 |
-
"tstamp": 1708057382.78
|
537 |
-
},
|
538 |
-
{
|
539 |
-
"model_a": "PNP",
|
540 |
-
"model_b": "InstructPix2Pix",
|
541 |
-
"winner": "model_b",
|
542 |
-
"judge": "arena_user_::1",
|
543 |
-
"anony": true,
|
544 |
-
"tstamp": 1708093689.8237
|
545 |
-
},
|
546 |
-
{
|
547 |
-
"model_a": "MagicBrush",
|
548 |
-
"model_b": "PNP",
|
549 |
-
"winner": "model_b",
|
550 |
-
"judge": "arena_user_::1",
|
551 |
-
"anony": true,
|
552 |
-
"tstamp": 1708093910.4683
|
553 |
-
},
|
554 |
-
{
|
555 |
-
"model_a": "Pix2PixZero",
|
556 |
-
"model_b": "Prompt2prompt",
|
557 |
-
"winner": "model_b",
|
558 |
-
"judge": "arena_user_::1",
|
559 |
-
"anony": false,
|
560 |
-
"tstamp": 1708095090.8232
|
561 |
-
},
|
562 |
-
{
|
563 |
-
"model_a": "Pix2PixZero",
|
564 |
-
"model_b": "Prompt2prompt",
|
565 |
-
"winner": "model_a",
|
566 |
-
"judge": "arena_user_::1",
|
567 |
-
"anony": false,
|
568 |
-
"tstamp": 1708095305.4665
|
569 |
-
},
|
570 |
-
{
|
571 |
-
"model_a": "InstructPix2Pix",
|
572 |
-
"model_b": "Prompt2prompt",
|
573 |
-
"winner": "model_b",
|
574 |
-
"judge": "arena_user_::1",
|
575 |
-
"anony": true,
|
576 |
-
"tstamp": 1708140553.1694
|
577 |
-
},
|
578 |
-
{
|
579 |
-
"model_a": "MagicBrush",
|
580 |
-
"model_b": "Prompt2prompt",
|
581 |
-
"winner": "model_a",
|
582 |
-
"judge": "arena_user_::1",
|
583 |
-
"anony": true,
|
584 |
-
"tstamp": 1708145512.3656
|
585 |
-
},
|
586 |
-
{
|
587 |
-
"model_a": "Pix2PixZero",
|
588 |
-
"model_b": "Prompt2prompt",
|
589 |
-
"winner": "tie (bothbad)",
|
590 |
-
"judge": "arena_user_::1",
|
591 |
-
"anony": true,
|
592 |
-
"tstamp": 1708145724.4127
|
593 |
-
},
|
594 |
-
{
|
595 |
-
"model_a": "Pix2PixZero",
|
596 |
-
"model_b": "PNP",
|
597 |
-
"winner": "model_b",
|
598 |
-
"judge": "arena_user_::1",
|
599 |
-
"anony": true,
|
600 |
-
"tstamp": 1708146846.5098
|
601 |
-
},
|
602 |
-
{
|
603 |
-
"model_a": "PNP",
|
604 |
-
"model_b": "MagicBrush",
|
605 |
-
"winner": "model_a",
|
606 |
-
"judge": "arena_user_::1",
|
607 |
-
"anony": true,
|
608 |
-
"tstamp": 1708189738.4864
|
609 |
-
},
|
610 |
-
{
|
611 |
-
"model_a": "Prompt2prompt",
|
612 |
-
"model_b": "InstructPix2Pix",
|
613 |
-
"winner": "model_b",
|
614 |
-
"judge": "arena_user_::1",
|
615 |
-
"anony": true,
|
616 |
-
"tstamp": 1708235874.9246
|
617 |
-
},
|
618 |
-
{
|
619 |
-
"model_a": "Pix2PixZero",
|
620 |
-
"model_b": "PNP",
|
621 |
-
"winner": "model_b",
|
622 |
-
"judge": "arena_user_::1",
|
623 |
-
"anony": false,
|
624 |
-
"tstamp": 1708257619.7115
|
625 |
-
},
|
626 |
-
{
|
627 |
-
"model_a": "MagicBrush",
|
628 |
-
"model_b": "Pix2PixZero",
|
629 |
-
"winner": "tie (bothbad)",
|
630 |
-
"judge": "arena_user_::1",
|
631 |
-
"anony": true,
|
632 |
-
"tstamp": 1708341265.7655
|
633 |
-
},
|
634 |
-
{
|
635 |
-
"model_a": "MagicBrush",
|
636 |
-
"model_b": "InstructPix2Pix",
|
637 |
-
"winner": "model_b",
|
638 |
-
"judge": "arena_user_::1",
|
639 |
-
"anony": true,
|
640 |
-
"tstamp": 1708350183.3086
|
641 |
-
},
|
642 |
-
{
|
643 |
-
"model_a": "MagicBrush",
|
644 |
-
"model_b": "Pix2PixZero",
|
645 |
-
"winner": "tie (bothbad)",
|
646 |
-
"judge": "arena_user_::1",
|
647 |
-
"anony": true,
|
648 |
-
"tstamp": 1708399707.1681
|
649 |
-
},
|
650 |
-
{
|
651 |
-
"model_a": "PNP",
|
652 |
-
"model_b": "MagicBrush",
|
653 |
-
"winner": "model_a",
|
654 |
-
"judge": "arena_user_::1",
|
655 |
-
"anony": true,
|
656 |
-
"tstamp": 1708441502.4707
|
657 |
-
},
|
658 |
-
{
|
659 |
-
"model_a": "InstructPix2Pix",
|
660 |
-
"model_b": "MagicBrush",
|
661 |
-
"winner": "model_a",
|
662 |
-
"judge": "arena_user_::1",
|
663 |
-
"anony": true,
|
664 |
-
"tstamp": 1708441716.8195
|
665 |
-
},
|
666 |
-
{
|
667 |
-
"model_a": "InstructPix2Pix",
|
668 |
-
"model_b": "MagicBrush",
|
669 |
-
"winner": "model_b",
|
670 |
-
"judge": "arena_user_::1",
|
671 |
-
"anony": false,
|
672 |
-
"tstamp": 1708546759.2009
|
673 |
-
},
|
674 |
-
{
|
675 |
-
"model_a": "InstructPix2Pix",
|
676 |
-
"model_b": "MagicBrush",
|
677 |
-
"winner": "model_a",
|
678 |
-
"judge": "arena_user_::1",
|
679 |
-
"anony": false,
|
680 |
-
"tstamp": 1708546805.4892
|
681 |
-
},
|
682 |
-
{
|
683 |
-
"model_a": "Pix2PixZero",
|
684 |
-
"model_b": "CycleDiffusion",
|
685 |
-
"winner": "tie (bothbad)",
|
686 |
-
"judge": "arena_user_::1",
|
687 |
-
"anony": true,
|
688 |
-
"tstamp": 1708547082.7124
|
689 |
-
},
|
690 |
-
{
|
691 |
-
"model_a": "InstructPix2Pix",
|
692 |
-
"model_b": "MagicBrush",
|
693 |
-
"winner": "model_b",
|
694 |
-
"judge": "arena_user_::1",
|
695 |
-
"anony": false,
|
696 |
-
"tstamp": 1708547166.9685
|
697 |
-
},
|
698 |
-
{
|
699 |
-
"model_a": "InstructPix2Pix",
|
700 |
-
"model_b": "MagicBrush",
|
701 |
-
"winner": "model_b",
|
702 |
-
"judge": "arena_user_::1",
|
703 |
-
"anony": false,
|
704 |
-
"tstamp": 1708547293.7107
|
705 |
-
},
|
706 |
-
{
|
707 |
-
"model_a": "CycleDiffusion",
|
708 |
-
"model_b": "PNP",
|
709 |
-
"winner": "tie (bothbad)",
|
710 |
-
"judge": "arena_user_::1",
|
711 |
-
"anony": true,
|
712 |
-
"tstamp": 1708575046.0529
|
713 |
-
},
|
714 |
-
{
|
715 |
-
"model_a": "CycleDiffusion",
|
716 |
-
"model_b": "MagicBrush",
|
717 |
-
"winner": "tie (bothbad)",
|
718 |
-
"judge": "arena_user_::1",
|
719 |
-
"anony": true,
|
720 |
-
"tstamp": 1708615466.9264
|
721 |
-
},
|
722 |
-
{
|
723 |
-
"model_a": "CycleDiffusion",
|
724 |
-
"model_b": "MagicBrush",
|
725 |
-
"winner": "model_b",
|
726 |
-
"judge": "arena_user_::1",
|
727 |
-
"anony": false,
|
728 |
-
"tstamp": 1708615516.3341
|
729 |
-
},
|
730 |
-
{
|
731 |
-
"model_a": "InstructPix2Pix",
|
732 |
-
"model_b": "PNP",
|
733 |
-
"winner": "model_b",
|
734 |
-
"judge": "arena_user_::1",
|
735 |
-
"anony": false,
|
736 |
-
"tstamp": 1709205399.0098
|
737 |
-
},
|
738 |
-
{
|
739 |
-
"model_a": "InstructPix2Pix",
|
740 |
-
"model_b": "PNP",
|
741 |
-
"winner": "model_b",
|
742 |
-
"judge": "arena_user_::1",
|
743 |
-
"anony": false,
|
744 |
-
"tstamp": 1709205767.8923
|
745 |
-
},
|
746 |
-
{
|
747 |
-
"model_a": "PNP",
|
748 |
-
"model_b": "InstructPix2Pix",
|
749 |
-
"winner": "model_b",
|
750 |
-
"judge": "arena_user_::1",
|
751 |
-
"anony": true,
|
752 |
-
"tstamp": 1709443700.05
|
753 |
-
},
|
754 |
-
{
|
755 |
-
"model_a": "MagicBrush",
|
756 |
-
"model_b": "Pix2PixZero",
|
757 |
-
"winner": "model_a",
|
758 |
-
"judge": "arena_user_::1",
|
759 |
-
"anony": true,
|
760 |
-
"tstamp": 1709702898.9291
|
761 |
-
},
|
762 |
-
{
|
763 |
-
"model_a": "CycleDiffusion",
|
764 |
-
"model_b": "Prompt2prompt",
|
765 |
-
"winner": "tie (bothbad)",
|
766 |
-
"judge": "arena_user_::1",
|
767 |
-
"anony": true,
|
768 |
-
"tstamp": 1710091925.1861
|
769 |
-
},
|
770 |
-
{
|
771 |
-
"model_a": "MagicBrush",
|
772 |
-
"model_b": "InstructPix2Pix",
|
773 |
-
"winner": "tie (bothbad)",
|
774 |
-
"judge": "arena_user_::1",
|
775 |
-
"anony": true,
|
776 |
-
"tstamp": 1710517781.1525
|
777 |
-
},
|
778 |
-
{
|
779 |
-
"model_a": "MagicBrush",
|
780 |
-
"model_b": "InstructPix2Pix",
|
781 |
-
"winner": "tie (bothbad)",
|
782 |
-
"judge": "arena_user_::1",
|
783 |
-
"anony": false,
|
784 |
-
"tstamp": 1710517859.2942
|
785 |
-
},
|
786 |
-
{
|
787 |
-
"model_a": "Pix2PixZero",
|
788 |
-
"model_b": "CycleDiffusion",
|
789 |
-
"winner": "tie (bothbad)",
|
790 |
-
"judge": "arena_user_::1",
|
791 |
-
"anony": true,
|
792 |
-
"tstamp": 1710535672.9791
|
793 |
-
},
|
794 |
-
{
|
795 |
-
"model_a": "CycleDiffusion",
|
796 |
-
"model_b": "Pix2PixZero",
|
797 |
-
"winner": "model_b",
|
798 |
-
"judge": "arena_user_10.16.25.191",
|
799 |
-
"anony": true,
|
800 |
-
"tstamp": 1711610477.1213
|
801 |
-
},
|
802 |
-
{
|
803 |
-
"model_a": "CycleDiffusion",
|
804 |
-
"model_b": "Pix2PixZero",
|
805 |
-
"winner": "model_b",
|
806 |
-
"judge": "arena_user_10.16.7.189",
|
807 |
-
"anony": true,
|
808 |
-
"tstamp": 1711629129.3894
|
809 |
-
},
|
810 |
-
{
|
811 |
-
"model_a": "InstructPix2Pix",
|
812 |
-
"model_b": "CycleDiffusion",
|
813 |
-
"winner": "model_b",
|
814 |
-
"judge": "arena_user_10.16.7.189",
|
815 |
-
"anony": true,
|
816 |
-
"tstamp": 1711629705.2246
|
817 |
-
},
|
818 |
-
{
|
819 |
-
"model_a": "CycleDiffusion",
|
820 |
-
"model_b": "Pix2PixZero",
|
821 |
-
"winner": "model_b",
|
822 |
-
"judge": "arena_user_10.16.25.191",
|
823 |
-
"anony": true,
|
824 |
-
"tstamp": 1711630362.5575
|
825 |
-
},
|
826 |
-
{
|
827 |
-
"model_a": "MagicBrush",
|
828 |
-
"model_b": "SDEdit",
|
829 |
-
"winner": "model_a",
|
830 |
-
"judge": "arena_user_127.0.0.1",
|
831 |
-
"anony": true,
|
832 |
-
"tstamp": 1711631112.5207
|
833 |
-
},
|
834 |
-
{
|
835 |
-
"model_a": "Pix2PixZero",
|
836 |
-
"model_b": "Prompt2prompt",
|
837 |
-
"winner": "model_a",
|
838 |
-
"judge": "arena_user_10.16.41.118",
|
839 |
-
"anony": true,
|
840 |
-
"tstamp": 1711631690.5127
|
841 |
-
},
|
842 |
-
{
|
843 |
-
"model_a": "MagicBrush",
|
844 |
-
"model_b": "InstructPix2Pix",
|
845 |
-
"winner": "model_a",
|
846 |
-
"judge": "arena_user_127.0.0.1",
|
847 |
-
"anony": true,
|
848 |
-
"tstamp": 1711633200.2923
|
849 |
-
},
|
850 |
-
{
|
851 |
-
"model_a": "MagicBrush",
|
852 |
-
"model_b": "InstructPix2Pix",
|
853 |
-
"winner": "model_a",
|
854 |
-
"judge": "arena_user_127.0.0.1",
|
855 |
-
"anony": true,
|
856 |
-
"tstamp": 1711633594.9922
|
857 |
-
},
|
858 |
-
{
|
859 |
-
"model_a": "MagicBrush",
|
860 |
-
"model_b": "SDEdit",
|
861 |
-
"winner": "model_a",
|
862 |
-
"judge": "arena_user_10.16.7.189",
|
863 |
-
"anony": true,
|
864 |
-
"tstamp": 1711635443.3071
|
865 |
-
},
|
866 |
-
{
|
867 |
-
"model_a": "CycleDiffusion",
|
868 |
-
"model_b": "MagicBrush",
|
869 |
-
"winner": "model_b",
|
870 |
-
"judge": "arena_user_10.16.25.191",
|
871 |
-
"anony": true,
|
872 |
-
"tstamp": 1711635899.3088
|
873 |
-
},
|
874 |
-
{
|
875 |
-
"model_a": "SDEdit",
|
876 |
-
"model_b": "MagicBrush",
|
877 |
-
"winner": "model_b",
|
878 |
-
"judge": "arena_user_10.16.41.118",
|
879 |
-
"anony": true,
|
880 |
-
"tstamp": 1711639015.428
|
881 |
-
},
|
882 |
-
{
|
883 |
-
"model_a": "InstructPix2Pix",
|
884 |
-
"model_b": "MagicBrush",
|
885 |
-
"winner": "model_b",
|
886 |
-
"judge": "arena_user_10.16.7.189",
|
887 |
-
"anony": true,
|
888 |
-
"tstamp": 1711646372.1201
|
889 |
-
},
|
890 |
-
{
|
891 |
-
"model_a": "Pix2PixZero",
|
892 |
-
"model_b": "Prompt2prompt",
|
893 |
-
"winner": "model_b",
|
894 |
-
"judge": "arena_user_10.16.17.217",
|
895 |
-
"anony": true,
|
896 |
-
"tstamp": 1712873850.0636
|
897 |
-
},
|
898 |
-
{
|
899 |
-
"model_a": "MagicBrush",
|
900 |
-
"model_b": "SDEdit",
|
901 |
-
"winner": "tie (bothbad)",
|
902 |
-
"judge": "arena_user_10.16.25.191",
|
903 |
-
"anony": true,
|
904 |
-
"tstamp": 1712876598.7667
|
905 |
-
}
|
906 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arena_elo/results/20240411/clean_battle_t2i_generation.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
arena_elo/results/20240411/elo_results_image_editing.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d66a54af51d2ecf89f461dbb4e15090d084638596952d3541ce369798a525ff3
|
3 |
-
size 57096
|
|
|
|
|
|
|
|
arena_elo/results/20240411/elo_results_t2i_generation.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:caf98f560387fa9d6b8c233e9915807adad62315cfdd6d4a5e7c9fda30140eb8
|
3 |
-
size 62422
|
|
|
|
|
|
|
|