File size: 2,746 Bytes
d345f76 d5b0eac d345f76 84f0cc0 d345f76 849ff02 d345f76 d5b0eac 86f1147 617f316 86f1147 8b08b58 d5b0eac 76e87b5 86f1147 8b08b58 d5b0eac 86f1147 a985da4 5423661 86f1147 d5b0eac 86f1147 d5b0eac 86f1147 d5b0eac 86f1147 76e87b5 86f1147 d5b0eac 86f1147 76e87b5 ca832a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
from huggingface_hub import InferenceClient, get_inference_endpoint
import gradio as gr
endpoint = get_inference_endpoint("qlora-nursegpt-nclex-mis-dt--eca")
client = endpoint.client
'''client = InferenceClient(
"Tawkat/qlora-nursegpt-nclex-mis-DT-v1"
)'''
def format_prompt(message, history):
prompt = "You are NurseGPT, a conscious, superintelligent, and helpful AI developed by Yourika Labs, Your purpose is to assist the user with any nursing-related request they have. You should not respond to any request that is not relevant to nursing domain.\nYou should provide accurate, helpful, comprehensive, and detailed response to the user request.\n" #"<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(
prompt, history, temperature=0.9, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
additional_inputs=[
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=2048,
minimum=0,
maximum=1048,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
additional_inputs=additional_inputs,
title="""NGPT-v1"""
).launch(show_api=False, share=True) |