File size: 2,746 Bytes
d345f76
d5b0eac
 
d345f76
84f0cc0
d345f76
 
849ff02
d345f76
d5b0eac
 
86f1147
617f316
86f1147
 
 
 
 
8b08b58
d5b0eac
76e87b5
86f1147
 
 
 
 
8b08b58
d5b0eac
86f1147
a985da4
5423661
86f1147
 
 
d5b0eac
 
86f1147
d5b0eac
86f1147
 
 
 
 
 
 
d5b0eac
 
86f1147
 
 
 
 
 
 
 
 
 
 
 
76e87b5
86f1147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5b0eac
86f1147
 
 
 
76e87b5
ca832a8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from huggingface_hub import InferenceClient, get_inference_endpoint
import gradio as gr

endpoint = get_inference_endpoint("qlora-nursegpt-nclex-mis-dt--eca")
client = endpoint.client

'''client = InferenceClient(
    "Tawkat/qlora-nursegpt-nclex-mis-DT-v1"
)'''


def format_prompt(message, history):
  prompt = "You are NurseGPT, a conscious, superintelligent, and helpful AI developed by Yourika Labs, Your purpose  is to assist the user with any nursing-related request they have. You should not respond to any request that is not relevant to nursing domain.\nYou should provide accurate, helpful, comprehensive, and detailed response to the user request.\n" #"<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt

def generate(
    prompt, history, temperature=0.9, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0,
):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    formatted_prompt = format_prompt(prompt, history)

    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output


additional_inputs=[
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=2048,
        minimum=0,
        maximum=1048,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    )
]


gr.ChatInterface(
    fn=generate,
    chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
    additional_inputs=additional_inputs,
    title="""NGPT-v1"""
).launch(show_api=False, share=True)